CHAPTER 5

CONNECTED EDGE NEIGHBOURHOOD NUMBER OF A GRAPH
CONNECTED EDGE NEIGHBOURHOOD NUMBER OF A GRAPH

ABSTRACT:

A set $T \subseteq E$ is a connected edge neighbourhood set if $\langle T \rangle$ is connected. The connected edge neighbourhood number $n'_c(G)$ of G is the minimum cardinality of a connected edge neighbourhood set (dn-set). Besides investigating the relationship of $n'_c(G)$ with other known parameters of G, some bounds for $n'_c(G)$ are obtained.

In this chapter, we define connected edge neighbourhood set of a connected graph.

A connected neighbourhood set of a connected graph G is an n-set S of G, such that, the subgraph $\langle S \rangle$ induced by S is connected. A minimum cardinality of a connected n-set is the connected neighbourhood number $n_c(G)$ of G. This parameter is studied in [8].

A connected edge neighbourhood set of a connected graph G is an edge neighbourhood set T of G, such that, the subgraph $\langle T \rangle$ induced by T is connected. The connected edge neighbourhood number $n'_c(G)$ of a
connected graph G is the minimum cardinality of a connected edge neighbourhood set of G.

Clearly, for a connected graph G,

$$n'_o(G) \leq n'_c(G)$$

where $n'_o(G)$ is the edge neighbourhood number of G.

For example, in G_1, $n'_o = n'_c = 2$ and in G_2, $n'_o = 2$, $n'_c = 3$.

Fig. 1
We observe that for C_4, a cycle of length 4, $n_Q(C_4) = 2$ and $n'(C_4) = 1$. But for C_7, $n_Q(C_7) = 4$ and $n'(C_7) = 5$. Thus there is no relation between n_Q and n'.

Also we observe that $n'_C(G) \neq n'_C(L(G))$. For $G = C_4$, $n'_C(L(G)) = n'_C(C_4) = 3$. But $n'_C(C_4) = 1$.

A connected domination number $\gamma_C(G)$ (the connected edge domination number $\gamma'_C(G)$) of a connected graph G is the minimum cardinality of a dominating set (edge dominating set) D, such that, the subgraph $<D>$ is connected. γ_C is introduced in [6] and studied in [3] and $\gamma'_C(G)$ is studied in [9].

It is observed that $\gamma' \leq \gamma'_C$ \hspace{1cm} (1) \hspace{1cm} where γ' is the edge domination number.

Since every connected edge dominating set is a connected edge neighbourhood set, we have

$n'_C \leq \gamma'_C$ \hspace{1cm} (2)

We first determine n'_C for some known graphs.

Proposition 5.1 : (a) $n'_C = 1$ for the following graphs,

(i) K_p (ii) K_p-x (iii) $K_{1,p-1}$ (iv) The wheel on p points.
(b) Suppose $x = uv$ is an edge in G with $N(u) \cap N(v) \neq \emptyset$ and $\deg u + \deg v \geq p$, then $n'_c = 1$; for example, $n'_c(K_{m,n}) = 1$

(c) If P_n is a path on n vertices then
- $n'_c(P_n) = 1$ for $n = 2, 3, 4$
- $n'_c(P_n) = n - 3$ for $n \geq 5$

(d) For a cycle C_n on n vertices,
- $n'_c(C_n) = 1$ if $n = 3, 4$
- $n'_c(C_n) = n - 2$ if $n \geq 5$

(e) For a tree T with q edges $n'_c = q - e$ where e is the number of pendant vertices in T.

Proposition 5.2: If S is a minimum connected edge neighbourhood set of a connected graph G, then $\langle S \rangle$ is a tree.

Proof: It is sufficient to prove that $\langle S \rangle$ is acyclic. Suppose $\langle S \rangle$ has a cycle z. Let x be an edge on the cycle z. Then every edge adjacent to x in S is adjacent to some edge on z. Hence $\langle S \rangle - x$ is a connected edge neighbourhood set of G, a contradiction. Hence the result.

Corollary 5.2.1: If S is a minimum edge neighbourhood set of a graph G then $\langle S \rangle$ is a forest.
Proposition 5.3: If S is minimum connected edge dominating set of a connected graph G, then $<S>$ is a tree.

Proof: Similar to Proposition 5.2.

Corollary 5.3.1: If S is a minimum edge dominating set of a graph G, then $<S>$ is a forest.

Proposition 5.4: For a connected graph G,\[\gamma_c - 1 \leq n'_c(G)\]

Proof: Let $S = \{x_1, x_2, \ldots, x_k\}$ be a minimum connected edge neighbourhood set of a connected graph G so that, $|S| = n'_c(G) = k$. By Proposition 5.2, $<S> = G'$ is a tree. Thus G' has $k + 1$ vertices each of which is incident to some x_i, $i = 1, 2, \ldots, k$.

Hence, these $k + 1$ vertices constitute a connected dominating set of G, and thus\[\gamma_c = k + 1 = n'_c + 1\]

or \[\gamma_c - 1 \leq n'_c\]

Corollary 5.4.1: $\gamma - 1 \leq n'_c$

Proposition 5.5: For any connected graph G,\[b \leq n'_c(G)\]

where 'b' is the number of non-pendant bridges of G.
Proof: Let S be a connected edge neighbourhood set of G. Let $x = uv$ be a non-pendant bridge of G.

Suppose $x \notin S$.

Then $u \in B_1$ and $v \in B_2$ for two different blocks B_1 and B_2, such that, every path containing u and v contains x also.

Since $x \notin S$, this implies that $\langle S \rangle$ is not connected, a contradiction.

Hence $x \in S$. Thus it follows that $b \leq n'_c(G)$.

Note: The above bound is attained for a tree other than $K_{1,n}$.

The following lower bounds of γ_c are established in [3] and [6].

Theorem A(i) [6]: For any connected graph G with p points and maximum degree Δ,

$$\frac{p}{\Delta+1} \leq \gamma_c$$

(ii) [3] $\text{diam}(G) - 1 \leq \gamma_c$

where $\text{diam}(G)$ denote the diameter of G.

Proposition 5.6: For any graph G with p points and maximum degree Δ,

...
\[\frac{\delta}{\Delta+1} \leq n'_c \]

where \(\delta \) is the minimum degree of \(G \).

Proof : From Theorem A(i) and Proposition 5.4 we have

\[\frac{p}{\Delta+1} - 1 \leq \gamma_c - 1 \leq n'_c \]

i.e.

\[\frac{p - 1 - \Delta}{\Delta+1} \leq n'_c \]

i.e.

\[\frac{\delta}{\Delta+1} \leq n'_c \]

\[\therefore p - 1 - \Delta = \tilde{\delta} \]

Hence

\[\frac{\delta}{\Delta+1} \leq n'_c \]

Proposition 5.7 : For any connected graph \(G \),

\[\text{diam}(G) - 2 \leq n'_c \]

where \(\text{diam}(G) \) denote the diameter of \(G \).

Proof : The result follows from Theorem A (ii).

Proposition 5.8 : For any connected graph \(G \) with \(p \) vertices,

\[n'_c + \epsilon_T \geq p - 1 \]

where \(\epsilon_T \) is maximum number of end vertices in spanning tree \(T \) of \(G \).
Proof: Let S be a minimum edge connected neighbourhood set with k edges
\[\text{i.e. } n'_c = |S| = k. \]

Then, by Proposition 5.2, $< S >$ is a tree with $k + 1$ vertices. We can now form a spanning tree T of G by adding remaining $p - (k + 1)$ vertices of G to $< S >$ and joining each of these vertices to one vertex of S to which it is adjacent.

In this way T will have at least $p - (k + 1)$ end vertices.

So \[e_T \geq p - (k + 1) \]
\[\text{i.e. } e_T + k \geq p - 1 \]
\[\text{i.e. } e_T + n'_c \geq p - 1 \]

The above result attains for all tree. i.e., for any tree T with 'p' vertices and 'e' end edges,

\[n'_c(T) + e = p - 1 \]
\[\text{i.e. } n'_c(T) = (p - 1) - e \]
\[= q - e. \]

Proposition 5.9: For a graph G, $n'_c = \gamma'_c$ if and only if there exists a minimum connected edge neighbourhood set S which is a connected edge dominating set.

Proof: Let $n'_c = \gamma'_c$ and S be a minimum connected edge dominating set. Then S is a connected edge neighbour-
hood set and since $n'_c = \gamma'_c$, S is a minimum connected edge neighbourhood set.

Conversely, let S be a minimum connected edge neighbourhood set, which is a connected edge dominating set. Hence $\gamma'_c \leq n'_c = |S|$ and we know $n'_c \leq \gamma'_c$ (from (2)). So we have $n'_c = \gamma'_c$.

Corollary 5.9.1: For any tree T, $n'_c = \gamma'_c$

Proof: The result is obvious from above Proposition 5.9.

Proposition 5.10: For any graph G, such that, G and \bar{G} are connected,

(i) $\gamma'_c(G) + \gamma'_c(\bar{G}) \leq 2(p - 2)$ (see [9])

(ii) $n'_c(G) + n'_c(\bar{G}) \leq 2(p - 2)$

Proof of (ii): From (i) and (2) result follows.

Notice that for the cycle C_5 of length 5, if $G = C_5$ then $\bar{G} = C_5$ and $n'_c(G) + n'_c(\bar{G}) = 3 + 3 = 6 = 2(p - 2)$. Thus the upper bound in Proposition 5.10(ii) is best possible.

Corollary 5.10.1: For any tree T with $q > 2$ edges, $T \neq K_1, n'_c(T) + n'_c(\bar{T}) \leq q$.
Proposition 5.11: If G has no cycles of length ≤ 4 then \(n'_c = \gamma'_c \).

Proof: Let \(S = \{x_1, x_2, \ldots, x_n\} \) be the collection of minimum number of edges, such that, \(<S> \) is connected and \(G = \bigcup_{x_i \in S} <N(x_i)> \) where \(i = 1, 2, \ldots, n \).

Clearly, \(|S| = n'_c \), since G has no cycles of length ≤ 4.

So, \(S \) covers all edges of \(G \), hence \(S \) is minimum connected dominating set, hence \(n'_c = \gamma'_c \).

Edge Independent and Edge Perfect Neighbourhood Numbers of a Graph

Let \(T \) be an edge neighbourhood set of \(G \). Then \(T \) is an edge independent neighbourhood set (IN'-set) if \(T \) is edge independent. Also, \(T \) is an edge perfect neighbourhood set (PN'-set) if for all \(x, y \in T, x \neq y \), the subgraphs \(<N(x)> \) and \(<N(y)> \) are edge disjoint.

For example in figure 2, \(\{x, y\} \) is both IN'-set and PN'-set.

```
Fig. 2
```

Fig. 2: Example of edge independent and edge perfect neighbourhood set.
We observe that a graph may not have an IN'-set or a PN'-set, for example any cycle of odd length \(n > 5 \). Also, any PN'-set is an IN'-set but not conversely. For example, for the graph in figure 3, the IN'-set \(\{a, b\} \) is not a PN'-set.

DEFINITION 5.1: A graph \(G \) is an IN'-graph (PN'-graph) if \(G \) has an IN'-set (PN'-set).

In view of the above remark, it follows that every PN'-graph is an IN'-graph but not conversely. The graph in figure 2 is an IN'-graph but not a PN'-graph.

DEFINITION 5.2: Let \(G \) be an IN'-graph. The edge independent neighbourhood number \(n_i(G) \) of \(G \) is the minimum cardinality of an IN'-set of \(G \).

DEFINITION 5.3: Let \(G \) be a PN'-graph. The edge perfect neighbourhood number \(n_p(G) \) of \(G \) is the minimum cardinality of a PN'-set of \(G \).
To start with, we deduce some elementary properties of n'_1 and n'_p.

Since every IN'-set is an edge neighbourhood set, every PN'-set is an IN'-set and every PN'-set is edge independent, we have

Proposition 5.12: If G is a PN'-graph, then

$$n'_o \leq n'_i \leq n'_p \leq \beta_1$$

where β_1 is the edge independence number of G.

For the graph G, in figure 4,

$$n'_o = n'_i = n'_p = \beta_1 = 1$$

\[\text{Fig. 4}\]

However, for the graph in figure 5,

- $n'_o = |\{a, b\}| = 2$
- $n'_i = |\{a, c, d\}| = 3$
- $n'_p = |\{e, f, c, g\}| = 4$
- $\beta_1 = |\{b, c, e, g, h\}| = 5$

\[\therefore n'_o < n'_i < n'_p < \beta_1\]
Proposition 5.13: Every cycle C_n, $n \geq 3$ where $n \equiv 0 \pmod{3}$ is PN*-graph.

Proof: Let x_1, x_2, x_3, \ldots denote the edges of C_n. Then $x_1, x_4, x_7, \ldots x_{3r-2}$ form a PN*-set.

We observe that, if $n'_o = 1$ for a graph G then $n'_o = n'_1 = n'_p = 1$.

Proposition 5.14:

i) If G is of order p with maximum degree $\Delta(G) = p - 1$ then $n'_o = n'_1 = n'_p = 1$.

ii) For the complete bipartite graph $K_{m,n}$

$$n'_o = n'_1 = n'_p = 1.$$

iii) For a path P_n of n vertices, $n \geq 2$

$$n'_o = n'_1 = n'_p = \left\lceil \frac{n-1}{3} \right\rceil$$
iv) For a cycle \(C_n \) of \(n \) vertices, \(n \geq 3 \)
\[
\begin{align*}
 n'_1(C_{3r}) &= n'_1(C_{3r+1}) = r, \quad r = 1, 2, 3, \ldots \nonumber \\
 n'_2(C_{3r}) &= r, \quad r = 2, 3, \ldots \nonumber
\end{align*}
\]
It is not hard to prove.

An edge dominating set \(T \) is an \textit{independent edge dominating set}, if set \(T \) is edge independent. The minimum cardinality of an independent edge dominating set is the \textit{independent edge domination number} and it is denoted by \(i'(G) \).

We observe that \(n'_1 \leq i' \quad \ldots \quad (13) \)
For example, \(n'_1(C_5) = i'(C_5) = 2 \)
But for the graph in figure 6,
\[
 n'_1(G) = 1, \quad i'(G) = 2
\]

![Fig. 6](image)

Proposition 5.15 : For a graph \(G \), \(n'_1 = i' \) if and only if there exists a minimum IN'-set \(T \), such that, every edge in \(E(G) - T \) is adjacent to some edge \(x \) in \(T \).

Proof : Let \(n'_1 = i' \) and \(T \) be a minimum independent edge dominating set. Then \(T \) is a IN'-set also and since
n'_i = i'. T is a minimum IN'-set. Clearly every edge in E(G) - T is adjacent to some edge x in T.

For the converse, suppose there is a minimum IN'-set T of G, such that, every edge in E(G) - T is adjacent to some edge x in T. Then T is an edge dominating set. Hence i' ≤ |T| = n'_i. Since n'_i ≤ i' it follows that n'_i = i'.

Corollary 5.15.1: If G has no cycles of length ≤ 4 then n'_o = n'_i = i'.

Proof: For an edge x in G, let G_x be the subgraph of G containing precisely x and all edges adjacent to x. Since G has no cycles of length ≤ 4. We have G_x = <N(x)>.

If T is any minimum IN'-set of G, then since G = U_{x∈T} <N(x)> = U_{x∈T} G_x. So it follows that, every edge of E - T is adjacent to some edge in T. Hence by above Proposition 5.16, n'_i = i'.

The following results are immediate.

Corollary 5.15.2: If G is a bipartite graph without the quadrilaterals, then n'_i = i'.

It is observed that if a given graph is PN'-graph then t ≤ γ' ≤ i' where t = n'_o or n'_i or n'_p.

\[
\begin{array}{c}
\text{T} \\
152,
\end{array}
\]

\[
\begin{array}{c}
\text{B} \\
9
\end{array}
\]
Proposition 5.16: i) For a graph,
\[n' \leq \gamma' \leq p/2 \] (see [7])

ii) For a \(P_{n'} \)-graph,
\[t \leq \gamma' < t' \leq p/2 \]
i.e. \(t \leq p/2 \) where \(t = n'_1, n'_o, n'_p \).

Proposition 5.17: If both \(G \) and \(\tilde{G} \) are \(P_{n'} \)-graphs

then \(t(G) + t(\tilde{G}) \leq p \)
and \(t(G) t(\tilde{G}) \leq \left(\frac{p}{2} \right)^2 \)

Proof: From the Proposition 5.16 it follows.
REFERENCES

1. C. Berge,
 Graphs and Hypergraphs,

2. E.J. Cockayne and S.T. Hedetniemi,
 Towards a Theory of Domination in Graphs,

3. S.T. Hedetniemi and R. Laskar,
 Connected Domination in Graphs,
 Graph Theory and Combinatorics, Academic Press,

4. S.R. Jayaram,
 Line Domination in Graphs,

5. R. Laskar and H.B. Walikar,
 On Domination Related Concepts in Graph Theory,

6. E. Sampathkumar and H.B. Walikar,
 The Connected domination number of a graph,
7. E. Sampathkumar and Prabha S. Neeralagi,
The Line Neighbourhood Number of a Graph,

8. E. Sampathkumar and Prabha S. Neeralagi,
Independent, Perfect and Connected Neighbourhood Numbers of a Graph,

9. A.G. Patwardhan,
Certain Topics in line domination theory of a graph,