CHAPTER 6

g*-CLOSED SETS IN BITOPOLOGICAL SPACES**

§ 6.1 Introduction

The concepts of g*-preclosed (briefly g*p-closed) sets, Tp*, *Tp and aTp*-space were introduced and studied by Veerakumar [120] in topological spaces in 2002. Also g*p-continuity and g*p-irresolute functions were introduced and studied in [120]. The class of g*p-closed sets is properly lies between the class of preclosed sets and the class of gp-closed sets.

This chapter contains five sections. In section 2, we introduce a new class of closed sets called, g*p-closed sets and g*p-open sets in bitopological spaces. Among many other results it is observed that every Tj - preclosed set is (Xj, Xj) - g*p-closed set and (xj5 Xj) - gp-closed set is (Xj, Xj) - g*p-closed set but not conversely.

In Section 3, we introduce the new spaces such as, (x, Xj)-Tp*-spaces, (Xj, Xj)-*Tp - spaces and (x, Xj)- aTp*-spaces as an application and study some of their properties. It is observed that (x, Xj)-Tp*-spaces are independent from (x, Xj)-T1/2-spaces and every (x, Xj)-Tp*-space is (x, Xj)-T*1/2-space but not conversely.

In Section 4, we introduce a new class of continuous functions, called

g*p-continuous functions in bitopological spaces and is denoted by D*P(τ₁, τ₂)-σ_k-continuity in bitopological spaces. During this process, some of their properties are obtained. It is found that every D*(τ₁, τ₂)-σ_k-continuous function is D*P(τ₁, τ₂)-σ_k-continuous but not conversely.

In the last section of this chapter, we introduce the concepts of g*p-bi-continuity, g*p-strongly-bi-continuity and pairwise g*p-irresolute functions in bitopological spaces and study some of their properties.

Throughout this chapter (X, τ₁, τ₂), (Y, σ₁, σ₂) and (Z, η₁, η₂) denote non-empty bitopological spaces on which no separation axioms are assumed unless otherwise mentioned and the fixed integers i, j, e, m, n ∈ {1, 2}.

§ 6.2 g*p-Closed Sets in Bitopological Spaces

In this section we introduce g*p-closed sets and g*p-open sets in bitopological spaces and study some of their properties.

Definition 6.2.1: A subset A of a bitopological space (X, τ₁, τ₂) is said to be (τ₁, τ₂)-g*-preclosed (briefly (τ₁, τ₂)-g*p-closed) set if τ_j-pcl(A) ⊆ U whenever A ⊆ U and U ∈ GO(X, τ_i).

We denote the family of all (τ₁, τ₂) – g*-preclosed sets in a bitopological space (X, τ₁, τ₂) by D*P(τ₁, τ₂).

Remark 6.2.2: If τ₁ = τ₂ in Definition 6.2.1, then (τ₁, τ₂) – g*p-closed set reduces to a g*p-closed set [120] in single topological spaces.
Theorem 6.2.3: Every \(\tau_j \) - preclosed (resp. \(\tau_j \) - closed, \(\tau_j \)-\(\alpha \)-closed) set is \((\tau_i, \tau_j)\) - \(g^p\)-closed.

Proof: The proof follows from definitions.

The converse of the above theorem need not be true as seen from the following example.

Example 6.2.4: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{a, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}\} \). Then the subset \(\{a, b\} \) is \((\tau_1, \tau_2)\) - \(g^p\)-closed set but not a \(\tau_2\)-preclosed set in \((X, \tau_1, \tau_2)\).

Example 6.2.5: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}\} \). Then the subset \(\{a, c\} \) is \((\tau_1, \tau_2)\) - \(g^p\)-closed set but not a \(\tau_2\)-closed set in \((X, \tau_1, \tau_2)\).

Example 6.2.6: Let \((X, \tau_1, \tau_2)\) be bitopological space where \(X = \{a, b, c\} \), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\} \). Then the subset \(\{a, c\} \) is \((\tau_1, \tau_2)\)- \(g^p\)-closed set but not a \(\tau_2\)-closed set in \((X, \tau_1, \tau_2)\).

Theorem 6.2.7: If \(A \) is both \(\tau_i \) - \(g\)-open and \((\tau_i, \tau_j)\) - \(g^p\)-closed, then \(A \) is \(\tau_j \) - preclosed set.

Proof: If \(A \in GO(X, \tau_i) \), then by hypothesis, \(\tau_j\text{-pcl}(A) \subseteq A \). But \(A \subseteq \tau_j\text{-pcl}(A) \) always. Therefore \(\tau_j\text{-pcl}(A) = A \). Hence \(A \) is \(\tau_j \) - preclosed set.

Theorem 6.2.8: In a bitopological space \((X, \tau_1, \tau_2)\), every \((\tau_i, \tau_j)\) - \(g^p\)-closed set is (i) \((\tau_i, \tau_j)\) - \(gp\)-closed and (ii) \((\tau_i, \tau_j)\) - \(gpr\)-closed set.

Proof: The proof follows from the definitions.

The converse of the above theorem need not be true as seen from the following examples.
Example 6.2.9: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$. Then the subset $\{a, c\}$ is (τ_1, τ_2)-gp-closed set but not a (τ_1, τ_2)-g*p-closed set.

Example 6.2.10: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{c\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}\}$. Then the subset $\{a, c\}$ is (τ_1, τ_2)-gpr-closed set but not a (τ_1, τ_2)-g*p-closed set.

Theorem 6.2.11: Every (τ_1, τ_2)-gαs-closed set is (τ_1, τ_2)-g*p-closed but not conversely.

Proof: Let A be a (τ_1, τ_2)-gαs-closed set in (X, τ_1, τ_2) and let G be τ_1-g-open set and so τ_1-gs-open such that $A \subseteq G$. Then τ_1-pcl$(A) \subseteq G$ as A is (τ_1, τ_2)-gp-closed. But τ_1-pcl$(A) \subseteq \tau_1$-pcl(A) is always true. Therefore τ_1-pcl$(A) \subseteq \tau_1$-pcl(A). Hence A is (τ_1, τ_2)-g*p-closed in (X, τ_1, τ_2).

Example 6.2.12: In the Example 5.2.10, the subset $\{a, b\}$ is (τ_1, τ_2)-g*p-closed set but not a (τ_1, τ_2)-gαs-closed set in the bitopological space (X, τ_1, τ_2).

Theorem 6.2.13: Every (τ_1, τ_2)-g-* closed set is (τ_1, τ_2)-g*p-closed set but not conversely.

Proof: Let A be a (τ_1, τ_2)-g*-closed set in (X, τ_1, τ_2). Let G be a τ_1-g-open set such that $A \subseteq G$. Then τ_1-cl $(A) \subseteq G$. But τ_1-pcl $(A) \subseteq \tau_1$-cl $(A) \subseteq G$ which implies that τ_1-pcl $(A) \subseteq G$. Therefore A is a (τ_1, τ_2)-g*p-closed set in (X, τ_1, τ_2).

154
Example 6.2.14: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then the set $\{a, b\}$ is (τ_1, τ_2)-g*-p-closed set but not a (τ_1, τ_2)-g*-closed set in (X, τ_1, τ_2).

Remark 6.2.15: The following examples show that (τ_i, τ_j)-g-closed sets and (τ_i, τ_j)-g*p-closed sets are independent of each other.

Example 6.2.16: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b\}\}$. Then the subset $\{a\}$ is (τ_1, τ_2)-g*p-closed but not a (τ_1, τ_2)-g-closed set.

Example 6.2.17: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{b, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}\}$. Then the subset $\{a, c\}$ is (τ_1, τ_2)-g-closed set but not a (τ_1, τ_2)-g*p-closed set.

Remark 6.2.18: The following examples show that (τ_i, τ_j)-rg-closed sets and (τ_i, τ_j)-g*p-closed sets are independent of each other.

Example 6.2.19: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{b, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$. Then the subset $\{b, c\}$ is (τ_1, τ_2)-g*p-closed set but not a (τ_1, τ_2)-rg-closed set.

Example 6.2.20: In Example 6.2.17, the subset $A=\{a, c\}$ is (τ_1, τ_2)-rg-closed set but not a (τ_1, τ_2)-g*p-closed set.

Remark 6.2.21: (τ_i, τ_j)-g*p-closed sets and τ_j-g-closed sets are independent of each other as seen from the following examples.

Example 6.2.22: In Example 6.2.17, the set $\{a, c\}$ is τ_2-g-closed set but not a (τ_1, τ_2)-g*p-closed set.
Example 6.2.23: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\} \) and \(\tau_2 = \{X, \phi, \{b, c\}\} \). Then the subset \(\{b, c\} \) is \((\tau_1, \tau_2) - g^p\)-closed set but not a \(\tau_2 - g \)-closed set.

Remark 6.2.24: \((\tau_i, \tau_j) - g^p\)-closed sets and \((\tau_i, \tau_j) - \omega\)-closed sets are independent of each other as shown from the following examples.

Example 6.2.25: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{c\}, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}\} \). Then the subset \(A = \{c\} \) is \((\tau_1, \tau_2)- g^p\)-closed set but not a \((\tau_1, \tau_2) - \omega\)-closed set.

Example 6.2.26: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \). Then the set \(\{a, b\} \) is \((\tau_1, \tau_2)- \omega\)-closed set but not a \((\tau_1, \tau_2)- g^p\)-closed set.

Remark 6.2.27: \((\tau_i, \tau_j) - g^p\)-closed sets and \((\tau_i, \tau_j) - w^g\)-closed sets are independent of each other as seen from the following examples.

Example 6.2.28: In Example 6.2.16, the set \(\{a, b\} \) is \((\tau_1, \tau_2)- w^g\)-closed set but not a \((\tau_1, \tau_2)- g^p\)-closed set in \((X, \tau_1, \tau_2)\).

Example 6.2.29: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{b\}, \{b, c\}\} \) and \(\tau_2 = \{X, \phi, \{a, b\}\} \). Then the set \(\{b, c\} \) is \((\tau_1, \tau_2)- g^p\)-closed set but not a \((\tau_1, \tau_2)- w^g\)-closed set in \((X, \tau_1, \tau_2)\).

Remark 6.2.30: If \(A, B \in D^*P(\tau_i, \tau_j) \), then \(A \cup B \notin D^*P(\tau_i, \tau_j) \) as shown from the following example.

Example 6.2.31: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}\} \) and \(\tau_2 = \{X, \phi, \{a, b\}\} \). Then the subsets \(\{a\} \) and \(\{b\} \) are \((\tau_1, \tau_2)- g^p\)-closed sets but their union \(A \cup B = \{a, b\} \) is not a \((\tau_1, \tau_2)- g^p\)-closed set in \((X, \tau_1, \tau_2)\).
Remark 6.2.32: The intersection of two \((\tau_i, \tau_j)\)-g*p-closed sets need not be \((\tau_i, \tau_j)\)-g*p-closed set as seen from the following example.

Example 6.2.33: Let \(X = \{a, b, c\}\), \(\tau_1 = \{X, \emptyset, \{a\}, \{a, c\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\). Then the subsets \(\{a, b\}\) and \(\{a, c\}\) are \((\tau_1, \tau_2)\)-g*p-closed sets but their intersection \(A \cap B = \{a\}\) is not a \((\tau_1, \tau_2)\)-g*p-closed set in \((X, \tau_1, \tau_2)\).

Remark 6.2.34: From the above results we have the following diagram.

Remark 6.2.35: \(D^*P(\tau_1, \tau_2)\) is generally not equal to \(D^*P(\tau_2, \tau_1)\) as seen from the following example.

Example 6.2.36: Let \(X = \{a, b, c\}\), \(\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \emptyset, \{a\}, \{a, c\}\}\). Then the subset \(\{a, b\} \in D^*P(\tau_2, \tau_1)\) but \(\{a, b\} \notin D^*P(\tau_1, \tau_2)\).
Theorem 6.2.37: If $\tau_1 \subseteq \tau_2$ in (X, τ_1, τ_2), then $D^*P(\tau_2, \tau_1) \subseteq D^*P(\tau_1, \tau_2)$.

Proof: Let A be a (τ_2, τ_1) - g^*p-closed set and U be a τ_1-g-open set containing A. Since $\tau_1 \subseteq \tau_2$, it follows that τ_2-pcl(A) $\subseteq \tau_1$-pcl(A) and $GO(X, \tau_1) \subseteq GO(X, \tau_2)$. Since $A \in D^*P(\tau_2, \tau_1)$, τ_1-pcl(A) $\subseteq U$, τ_2-pcl(A) $\subseteq U$, U is τ_1-g-open. Thus A is (τ_1, τ_2) - g^*-closed. Hence $D^*P(\tau_2, \tau_1) \subseteq D^*P(\tau_1, \tau_2)$.

The converse of the above theorem need not be true as seen from the following example.

Example 6.2.38: In Example 6.2.4, $D^*P(\tau_2, \tau_1) \subseteq D^*P(\tau_1, \tau_2)$ but τ_1 is not contained in τ_2.

Theorem 6.2.39: For each point x of (X, τ_1, τ_2), a singleton set $\{x\}$ is τ_1-g-closed set or $\{x\}^c$ is (τ_1, τ_1) - g^*p-closed set.

Proof: Suppose $\{x\}$ is not τ_1 - g-closed. Then $\{x\}^c$ is not τ_1 - g-open. Therefore τ_1 - g-open set containing $\{x\}$ is X only. Also τ_1-pcl($\{x\}^c)$ $\subseteq X$. Hence $\{x\}^c$ is (τ_1, τ_1) - g^*p-closed.

Theorem 6.2.40: If a set A is (τ_1, τ_2) - g^*p-closed set in (X, τ_1, τ_2), then τ_1-pcl(A)-A contains no non-empty τ_1-g-closed set.

Proof: Let A be a (τ_1, τ_2) - g^*p-closed set and F be τ_1-g-closed set contained in τ_1-pcl(A)-A. Since $A \in D^*P(\tau_1, \tau_2)$, we have τ_1-pcl(A) $\in F^c$. Consequently $F \subseteq \tau_1$-pcl(A) $\cap (X- \tau_1$-pcl(A)) = ϕ.

The converse of the above theorem need not be true as seen from the following example.
Example 6.2.41: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \emptyset, \{b\}, \{c\}, \{b, c\}\} \) and \(\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\} \). If \(A = \{b\} \), then \(\tau_2.pcl(A) - A = \{c\} \) does not contain any non-empty \(\tau_1 \)-g-closed set. But \(A \) is not a \((\tau_1, \tau_2) \)-g*p-closed set.

Theorem 6.2.42: If \(A \) is \((\tau_n, \tau_j) \) - g*p-closed set in \((X, \tau_1, \tau_2) \), then \(A \) is \(\tau_j \)-preclosed if and only if \(\tau_j.pcl(A) - A \) is \(\tau_j \)-g-closed set.

Proof: Necessity: If \(A \) is \(\tau_j \) - preclosed, then \(\tau_j.pcl(A) = A \). That is \(\tau_j.pcl (A) - A = \emptyset \) and hence \(\tau_j.pcl (A) - A \) is \(\tau_j \)-g-closed set.

Sufficiency: If \(\tau_j.pcl(A) - A \) is \(\tau_j \)-g-closed, by Theorem 6.2.40, \(\tau_j.pcl(A) - A = \emptyset \), since \(A \) is \((\tau_n, \tau_j) \) - g*p-closed. That is \(\tau_j.pcl (A) = A \). Therefore \(A \) is \(\tau_j \)-preclosed.

Theorem 6.2.43: If \(A \) is \((\tau_n, \tau_j) \) - g*p-closed set, then \(\tau_j.pcl(\{x\}) \cap A \neq \emptyset \), for each \(x \in \tau_j.pcl (A) \).

Proof: If \(\tau_j.pcl(\{x\}) \cap A = \emptyset \), for each \(x \in \tau_j.pcl(A) \), then \(A \subseteq (\tau_j.pcl(\{x\}))^c \).

Since \(A \) is \((\tau_n, \tau_j) \) - g*p-closed, we have \(\tau_j.pcl(A) \subseteq (\tau_j.pcl(\{x\}))^c \). This shows that \(x \notin \tau_j.pcl (A) \). This contradicts the assumption.

Theorem 6.2.44: If \(A \) is \((\tau_n, \tau_j) \) - g*p-closed set and \(A \subseteq B \subseteq \tau_j.pcl(A) \), then \(B \) is \((\tau_n, \tau_j) \) - g*p-closed set.

Proof: Let \(B \subseteq G \), where \(G \) is \(\tau_j \)-g-open. Then \(A \subseteq B \) implies \(A \subseteq G \). As \(A \) is \((\tau_n, \tau_j) \) - g*p-closed set, \(\tau_j.pcl(A) \subseteq G \). Now \(B \subseteq \tau_j.pcl(A) \) which implies \(\tau_j.pcl(B) \subseteq \tau_j.pcl(\tau_j.pcl(A)) = \tau_j.pcl(A) \). Thus \(\tau_j.pcl(B) \subseteq G \). And therefore \(B \) is \((\tau_n, \tau_j) \) - g*p-closed set.

Theorem 6.2.45: Let \(A \subseteq Y \subseteq X \) and suppose that \(A \) is \((\tau_n, \tau_j) \) - g*p-closed in \((X, \tau_1, \tau_2) \). Then \(A \) is \((\tau_n, \tau_j) \) - g*p-closed relative to \(Y \).
Proof: Let S be any τ_i-g-open set in Y such that $A \subseteq S$. Then $S = U \cap Y$ for some $U \in \text{GO}(X, \tau_i)$. Thus $A \subseteq U \cap Y$ and so $A \subseteq U$. Since A is (τ_n, τ_j)-g^*p-closed in X, $\tau_p.pcl(A) \subseteq U$ and therefore $Y \cap \tau_p.pcl(A) \subseteq Y \cap U$. That is $\tau_p.pcl_y(A) \subseteq S$, since $\tau_p.pcl_y(A) = Y \cap \tau_p.pcl(A)$. Hence A is (τ_n, τ_j)-g^*p-closed relative to Y.

Theorem 6.2.46: In a bitopological space (X, τ_1, τ_2), $\text{GO}(X, \tau_i) \subseteq \{F \subseteq X: F^c \in \tau_j\}$ if and only if every subset of X is a (τ_n, τ_j)-g^*p-closed set.

Proof: Suppose that $\text{GO}(X, \tau_i) \subseteq \{F \subseteq X: F^c \in \tau_j\}$. Let A be a subset of (X, τ_1, τ_2) and $U \in \text{GO}(X, \tau_i)$ such that $A \subseteq U$. Then $\tau_p.pcl(A) \subseteq \tau_p.pcl(U) = U$. Hence A is (τ_n, τ_j)-g^*p-closed set.

Conversely, suppose that every subset of (X, τ_1, τ_2) is (τ_n, τ_j)-g^*p-closed set. Let $U \in \text{GO}(X, \tau_i)$. Since U is (τ_n, τ_j)-g^*p-closed, we have $\tau_p.pcl(U) \subseteq U$. Therefore $U \in \{F \subseteq X: F^c \in \tau_j\}$ and we have $\text{GO}(X, \tau_i) \subseteq \{F \subseteq X: F^c \in \tau_j\}$.

Now we introduce the following.

Definition 6.2.47: A subset A of a bitopological space (X, τ_1, τ_2) is said to be (τ_n, τ_j)-g^*p-open set if A^c is (τ_n, τ_j)-g^*p-closed in (X,τ_1, τ_2).

Theorem 6.2.48: Every τ_j-preopen (resp. τ_j-open, τ_j-α-open and (τ_n, τ_j)-g^*-open) set is (τ_n, τ_j)-g^*p-open set but not conversely.

Proof: Proof follows from the Theorems 6.2.3 and 6.2.11.
Theorem 6.2.49: Every $(X_j, T_j) - g*p$-open set is (i) $(X_j, T_j) - g*p$-open and (ii) $(T_j, X_j) - g*p$r-open set but not conversely.

Proof: Proof follows from the Theorem 6.2.8.

Theorem 6.2.50: A subset A of (X, T_1, T_2) is $(X_j, T_j) - g*p$-open set if and only if $F \subseteq T_j$-pint (A) whenever F is T_1-g-closed set and $F \subseteq A$.

Proof: Suppose that F is T_1-g-closed set, $F \subseteq A$ and $F \subseteq T_j$-pint (A). Let G be T_1-g-open and $A^c \subseteq G$. Then $G^c \subseteq A$ and G^c is T_1-g-closed. Thus $G^c \subseteq T_j$-pint (A) and $(T_j$-pint $(A))^c \subseteq G$. It follows that T_j-pcl $(A^c) \subseteq G$ and hence A^c is $(T_n, T_j) - g*p$-closed. Hence A is $(T_n, T_j) - g*p$-open.

Conversely, suppose that A is $(T_n, T_j) - g*p$-open, $F \subseteq A$ and F is T_j-g-closed. Then F^c is T_1-g-open and $A^c \subseteq F^c$. Therefore $(T_j$-pcl $(A^c)) \subseteq F^c$ and hence $(T_j$-pint $(A))^c \subseteq F^c$. Thus $F \subseteq T_j$-pint (A).

Theorem 6.2.51: If a subset A of (X, T_1, T_2) is $(T_n, T_j) - g*p$-closed, then T_j-pcl $(A) - A$ is $(T_n, T_j) - g*p$-open.

Proof: Let A be a T_1-g-closed set such that $F \subseteq T_j$-pcl $(A) - A$. It follows that $F = \phi$. Therefore $F \subseteq (T_j$-pint $(T_j$-pint $(A) - A)$. Thus T_j-pcl $(A) - A$ is $(T_n, T_j) - g*p$-open.
§ 6.3 Applications of $(\tau_1, \tau_2) - g^p$-Closed Sets

In this section, we introduce new spaces namely, $(\tau_1, \tau_2) - T_p^*$-spaces, $(\tau_1, \tau_2) - T_p^*$-spaces and $(\tau_1, \tau_2) - T_p^*$-spaces as an application in bitopological spaces and obtain some of their properties.

Definition 6.3.1: A bitopological space (X, τ_1, τ_2) is said to be a $(\tau_1, \tau_2) - T_p^*$-space if every $(\tau_1, \tau_2) - g^p$-closed set is τ_2-closed.

Remark 6.3.2: If $\tau_1 = \tau_2$ in the Definition 6.3.1, we obtain the definition of T_p^*-space [120].

Theorem 6.3.3: If (X, τ_1, τ_2) is $(\tau_1, \tau_2) - T_p^*$-space, then it is $(\tau_1, \tau_2) - T_{1/2}$-space but not conversely.

Proof: Let (X, τ_1, τ_2) be a $(\tau_1, \tau_2) - T_p^*$-space and A be a $(\tau_1, \tau_2) - g^p$-closed set (X, τ_1, τ_2). By Theorem 6.2.11, A is $(\tau_1, \tau_2) - g^p$-closed set. Since (X, τ_1, τ_2) is a $(\tau_1, \tau_2) - T_p^*$-space, A is τ_2-closed. Hence (X, τ_1, τ_2) is $(\tau_1, \tau_2) - T_{1/2}$-space.

Example 6.3.4: Let X, τ_1 and τ_2 be as in Example 6.2.14, Then (X, τ_1, τ_2) is a $(\tau_1, \tau_2) - T_{1/2}$-space but not a $(\tau_1, \tau_2) - T_p^*$-space.

Theorem 6.3.5: If a bitopological space (X, τ_1, τ_2) is $(\tau_1, \tau_2) - T_p^*$-space, then $\{x\}$ is τ_2-open or τ_2-g-closed for each $x \in X$.

Proof: Suppose that $\{x\}$ is not τ_2-g-closed set of (X, τ_1, τ_2). Then $\{x\}^c$ is $(\tau_1, \tau_2) - g^p$-closed set of (X, τ_1, τ_2) by Theorem 6.2.39. Since (X, τ_1, τ_2) is a $(\tau_1, \tau_2) - T_p^*$-space, $\{x\}^c$ is τ_2-closed. Therefore $\{x\}$ is τ_2-open.

The converse of the above theorem need not be true as shown from the following example.
Example 6.3.6: In Example 6.2.14, the space \((X, \tau_1, \tau_2)\) is not a \((\tau_1, \tau_2) - T_p^*\) space. However any singleton set of \((X, \tau_1, \tau_2)\) is \(\tau_2\)-open set or \(\tau_1\)-g-closed.

Remark 6.3.7: \((X, \tau_1)\)-space is not generally \(T_p^*\)-space even if \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_p^*\) - space as shown in the following Example 6.3.8. Also \((X, \tau_1, \tau_2)\) is not generally \((\tau_1, \tau_2) - T_p^*\) - space even if both \((X, \tau_1)\) and \((X, \tau_2)\) are \(T_p^*\)-spaces. This is shown in Example 6.3.9.

Example 6.3.8: In the Example 6.2.25, the space \((X, \tau_1)\) is not a \(T_p^*\)-space but \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_p^*\)-space.

Example 6.3.9: Let \(X = \{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}\). Then both \((X, \tau_1)\) and \((X, \tau_2)\) are \(T_p^*\)-spaces but \((X, \tau_1, \tau_2)\) is not a \((\tau_1, \tau_2) - T_p^*\)-space.

Remark 6.3.10: The following examples show that the concept of \((\tau_i, \tau_j) - T_p^*\) - spaces and \((\tau_i, \tau_j) - T_{1/2}\) -spaces are independent of each other.

Example 6.3.11: Let \(X, \tau_1\) and \(\tau_2\) be as in Example 6.2.25. Then \((X, \tau_1, \tau_2)\) is a \((\tau_1, \tau_2) - T_p^*\) - space but not a \((\tau_1, \tau_2) - T_{1/2}\) - space.

Example 6.3.12: Let \(X=\{a, b, c\}, \tau_1 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}\). Then \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{1/2}\) - space but not a \((\tau_1, \tau_2) - T_p^*\)-space.

Theorem 6.3.13: If \((X, \tau_1, \tau_2)\) is \((\tau_i, \tau_j) - T_p^*\)-space, then \(X\) is \((\tau_i, \tau_j) - T_{1/2}\) -space but not conversely.

163
Proof: Let \((X, \tau_1, \tau_2)\) be a \((\tau_n, \tau_j)\)-\(T_p\)-space and \(A\) be a \((\tau_n, \tau_j)\)-\(g^*s\)-closed set \((X, \tau_1, \tau_2)\). By Theorem 6.2.11, \(A\) is \((\tau_n, \tau_j)\)-\(g^p\)-closed set. Since \((X, \tau_1, \tau_2)\) is \((\tau_n, \tau_j)\)-\(T_p\)-space, \(A\) is \(\tau_j\)-closed. Hence \((X, \tau_1, \tau_2)\) is \((\tau_n, \tau_j)\)-\(\alpha_g T^*_1/2\)-space.

Example 6.3.14: Let \(X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}\). Then the space \((X, \tau_1, \tau_2)\) is a \((\tau_1, \tau_2)\)-\(\alpha_g T^*_1/2\)-space but not a \((\tau_1, \tau_2)\)-\(T_p\)-space.

Definition 6.3.15: A bitopological space \((X, \tau_1, \tau_2)\) is said to be strongly pairwise \(T_p\)-space if it is both \((\tau_1, \tau_2)\)-\(T_p\)-space and \((\tau_2, \tau_1)\)-\(T_p\)-space.

Theorem 6.3.16: If \((X, \tau_1, \tau_2)\) is strongly pairwise \(T_p\)-space then it is strongly pairwise \(T^*_1/2\)-space but not conversely.

Proof: The proof follows from Theorem 6.3.3.

Example 6.3.17: Let \(X, \tau_1\) and \(\tau_2\) be as in Example 6.2.14, Then \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\)-\(T^*_1/2\)-space and also a \((\tau_2, \tau_1)\)-\(T^*_1/2\)-space and therefore it is strongly pairwise \(T^*_1/2\)-space. But \((X, \tau_1, \tau_2)\) is not strongly pairwise \(T_p\)-space, since it is not a \((\tau_1, \tau_2)\)-\(T_p\)-space.

We now introduce the following.

Definition 6.3.18: A bitopological space \((X, \tau_1, \tau_2)\) is said to be a \((\tau_n, \tau_j)\)-\(*T_p\)-space if every \((\tau_n, \tau_j)\)-\(gp\)-closed set is \((\tau_n, \tau_j)\)-\(g^p\)-closed set.

Remark 6.3.19: The concepts of \((\tau_n, \tau_j)\)-\(*T_p\)-spaces and \((\tau_n, \tau_j)\)-\(T_p\)-spaces are independent of each other as seen from the following examples.
Example 6.3.20: In the Example 6.3.12, the space \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{p}^{*}\) - space but not a \((\tau_1, \tau_2) - T_{p}^{*}\)-space.

Example 6.3.21: Let \(X=\{a, b, c\}\), \(\tau_1 = \{X, \phi, \{a\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}\). Then the space \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{p}^{*}\) - space but not a \((\tau_1, \tau_2) - T_{p}^{*}\)-space.

Remark 6.3.22: The following examples show that the concept of \((\tau_n, \tau_j) - T_{p}^{*}\)-spaces and \((\tau_n, \tau) - T_{1/2}^{*}\)-spaces are independent of each other.

Example 6.3.23: In the Example 6.2.25, the space \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{1/2}^{*}\) - space but not a \((\tau_1, \tau_2) - T_{p}^{*}\)-space.

Example 6.3.24: In the Example 6.2.16, the space \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{p}^{*}\) - space but not a \((\tau_1, \tau_2) - T_{1/2}^{*}\)-space.

Theorem 6.3.25: If a bitopological space \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2) - T_{p}^{*}\)-space, then \(\{x\}\) is \(\tau_j\)-closed or \(\tau_j\)-g*p-open for each \(x \in X\).

Proof: Suppose that \(\{x\}\) is not \(\tau_j\)-closed set of \((X, \tau_1, \tau_2)\). Then \(\{x\}\) is \((\tau_n, \tau_j) - gp\)-closed set of \((X, \tau_1, \tau_2)\) by Theorem 6.2.39. Since \((X, \tau_1, \tau_2)\) is a \((\tau_n, \tau_j) - T_{p}^{*}\)-space, \(\{x\}\) is \(\tau_j\)-g*p-closed set. Therefore \(\{x\}\) is \(\tau_j\)-g*p-open set.

The converse of the above theorem need not be true as shown from the following example

Example 6.3.26: Let \(X=\{a, b, c\}\), \(\tau_1 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{a, c\}\}\). Then any singleton set of \((X, \tau_1, \tau_2)\) is \(\tau_2\)-g*p-open or \(\tau_1\)-closed, but \((X, \tau_1, \tau_2)\) is not a \((\tau_1, \tau_2) - T_{p}^{*}\)-space.
Definition 6.3.27: A bitopological space (X, τ_i, τ_j) is said to be a (τ_i, τ_j)-\(\alpha T_p^*\)-space if every $(\tau_i, \tau_j) - g^*p$-closed set is τ_j-preclosed set.

Theorem 6.3.28: Every $(\tau_i, \tau_j) - T_p^*$-space is $(\tau_i, \tau_j) - \alpha T_p^*$-space but not conversely.

Proof: Follows from the definitions.

Example 6.3.29: In the Example 6.2.10, the space (X, τ_1, τ_2) is (τ_1, τ_2)-\(\alpha T_p^*\)-space but not a $(\tau_1, \tau_2) - T_p^*$-space.

Remark 6.3.30: From the above results we have the following diagram.

```
(T_i, T_j)- T_{1/2}^*\text{-space} \quad \downarrow \quad (T_i, T_j)- T_{2/1}^*\text{-space}
```

```
(T_i, T_j)- T_{1/2}^*\text{-space} \quad \downarrow \quad (T_i, T_j)- T_{2/1}^*\text{-space}
```

```
(T_i, T_j)- T_{1/2}^*\text{-space} \quad \downarrow \quad (T_i, T_j)- T_{2/1}^*\text{-space}
```

where $A \rightarrow B$ represents A implies B but not conversely and $A \leftrightarrow B$ represents A and B are independent of each other.

Remark 6.3.31: The following examples show that the concepts of (τ_i, τ_j)-\(\alpha T_p^*\)-spaces and $(\tau_i, \tau_j) - *T_p^*$-spaces are independent of each other.

Example 6.3.32: In Example 6.2.31, the space (X, τ_1, τ_2) is a $(\tau_1, \tau_2) - \alpha T_p^*$-space but not a $(\tau_1, \tau_2) - *T_p^*$-space.
Example 6.3.33: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{c\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{a\}\}$. Then the space (X, τ_1, τ_2) is (τ_1, τ_2) - $*_p$ - space but not a (τ_1, τ_2) - α_Tp - space.

§ 6.4. $g*p$-Continuous Functions in Bitopological Spaces

In this section we introduce $g*p$-continuous functions in bitopological spaces and obtain some of their properties.

Definition 6.4.1: A function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is called $D*P (\tau_i, \tau_j)$- σ_k-continuous ($g*p$-continuous) if the inverse image of every σ_k-closed set in (Y, σ_1, σ_2) is (τ_i, τ_j)- $g*p$-closed set in (X, τ_1, τ_2).

Remark 6.4.2: If $\tau_1 = \tau_2 = \tau$ and $\sigma_1 = \sigma_2 = \sigma$ in Definition 6.4.1, then $g*p$-continuous functions of bitopological spaces coincides with $g*p$-continuity [120] of topological spaces.

Theorem 6.4.3: If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is τ_j - σ_k-continuous, then f is $D*P (\tau_i, \tau_j)$- σ_k-continuous.

Proof: Let V be a σ_k-closed set in (Y, σ_1, σ_2). Then $f^{-1}(V)$ is τ_j-closed set. By Theorem 6.2.3, $f^{-1}(V)$ is (τ_i, τ_j)- $g*p$-closed set in (X, τ_1, τ_2). Then f is $D*P(\tau_i, \tau_j)$- σ_k-continuous.

The converse of the above theorem need not be true as seen from the following example.
Example 6.4.4: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{b\}\}$, $\tau_2 = \{X, \phi, \{b, c\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}\}$, $\sigma_2 = \{Y, \phi, \{q\}\}$. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = p$, $f(b) = f(c) = q$. Then f is $D^*P(\tau_1, \tau_2)$-σ_2-continuous but f is not τ_1-σ_2-continuous.

Theorem 6.4.5: If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\alpha^*(\tau_1, \tau_j)$-σ_k-continuous, then f is $D^*P(\tau_i, \tau_j)$ - σ_k-continuous but not conversely.

Proof: Let V be a σ_k-closed set in (Y, σ_1, σ_2). Then $f^1(V)$ is (τ_i, τ_j)-$\alpha g^* s$-closed set in (X, τ_1, τ_2) as f is $\alpha^*(\tau_i, \tau_j)$-σ_k-continuous. By Theorem 6.2.11, $f^1(V)$ is (τ_i, τ_j)-$g^* p$-closed set in (X, τ_1, τ_2). Hence f is $D^*P(\tau_i, \tau_j)$-σ_k-continuous function.

Example 6.4.6: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a, b\}\}$, $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}\}$, $\sigma_2 = \{Y, \phi, \{c\}, \{a, c\}\}$. Then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\alpha^*(\tau_i, \tau_j)$-σ_k-continuous but not $\alpha^*(\tau_i, \tau_2)$-σ_2-continuous, since for the σ_2- closed set $\{a, b\}$ in (Y, σ_1, σ_2), $f^1(\{a, b\}) = \{a, b\}$ is not a (τ_i, τ_j)-$\alpha g^* s$-closed set in (X, τ_1, τ_2) but it is (τ_i, τ_2)-$g^* p$-closed set in (X, τ_1, τ_2).

Theorem 6.4.7: If a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D^*P(\tau_i, \tau_j)$ - σ_k-continuous, then f is $\zeta(\tau_i, \tau_j)$ - σ_k-continuous.

Proof: Let V be a σ_k-closed set in (Y, σ_1, σ_2). Then $f^1(V)$ is (τ_i, τ_j)- $g^* p$-closed set in (X, τ_1, τ_2) as f is $D^*P(\tau_i, \tau_j)$-σ_k-continuous. By Theorem 6.2.8 (ii), $f^1(V)$ is (τ_i, τ_j)- gpr-closed set in (X, τ_1, τ_2). Hence f is $\zeta(\tau_i, \tau_j)$ - σ_k-continuous function.

The converse of the above theorem need not be true as seen from the following example.
Example 6.4.8: Let $X = Y = \{a, b, c\}$, $\tau_i = \{X, \phi, \{a\}, \{a, b\}\}$, $\tau_2 = \{X, \phi, \{a\}, \{a, c\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}\}$, $\sigma_2 = \{Y, \phi, \{a, b\}\}$. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then the function f is $\zeta(\tau_1, \tau_2)$-σ_2-continuous but not $D^*P(\tau_i, \tau_2)$-σ_2-continuous.

Theorem 6.4.9: If a function $f: (X, \tau_i, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D^*P(X, \tau_i)$-σ_k-continuous, then f is (τ_i, τ_j)-σ_k-continuous.

Proof: Let K be a σ_k-closed set in (Y, σ_i, σ_2). Then $f^{-1}(K)$ is (τ_i, τ_j)-g^*p-closed set in (X, τ_1, τ_2) as f is $D^*P(\tau_i, \tau_j)$-σ_k-continuous. By Theorem 6.2.8 (i), $f^{-1}(V)$ is (τ_i, τ_j)-gp-closed set in (X, τ_1, τ_2). Hence f is (τ_i, τ_j)-gp-σ_k-continuous function.
The converse of the above theorem need not be true as seen from the following example.

Example 6.4.10: Let $X = Y = \{a, b, c\}$, $\tau_i = \{X, \phi, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}, \{a, b\}\}$ and $\sigma_2 = \{Y, \phi, \{a\}\}$. Then the identity function $f: (X, \tau_i, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is (τ_i, τ_2)-gp-σ_1-continuous but not $D^*P(\tau_i, \tau_2)$-σ_1-continuous.

Theorem 6.4.11: If $f: (X, \tau_i, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D^*(\tau_i, \tau_j)$-σ_k-continuous, then f is $D^*P(\tau_i, \tau_j)$-σ_k-continuous but not conversely.

Proof: Let V be a σ_k-closed set in (Y, σ_1, σ_2). Then $f^{-1}(V)$ is (τ_i, τ_j)-g^*-closed set in (X, τ_1, τ_2). By Theorem 6.2.13, $f^{-1}(V)$ is (τ_i, τ_j)-g^*p-closed set in (X, τ_1, τ_2). Therefore f is $D^*P(\tau_i, \tau_j)$-σ_k-continuous.

Example 6.4.12: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$, $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}, \{b\}\}$, $\sigma_2 = \{Y, \phi, \{a\}\}$. Define a function
f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) by f(a) = b, f(b) = c and f(c) = a. Then the function f is D^*(τ_1, τ_2)-σ_2-continuous but not D*(τ_1, τ_2)-σ_2-continuous.

Remark 6.4.13: D(τ_1, τ_2)-σ_k-continuous and D^*P(τ_1, τ_2)-σ_k-continuous functions are independent of each other as seen from the following examples.

Example 6.4.14: Let X = Y = \{a, b, c\}, τ_1 = \{X, φ, \{a\}, \{b, c\}\}, τ_2 = \{X, φ, \{a\}\} and σ_1 = \{Y, φ, \{a\}, \{a, b\}\}, σ_2 = \{Y, φ, \{a\}, \{a, c\}\}. Define a function f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) by f(a) = b, f(b) = a and f(c) = c. Then f is D(τ_1, τ_2)-σ_2-continuous but not a D^*P(τ_1, τ_2)-σ_2-continuous, since for the σ_2-closed set \{b, c\} in (Y, σ_1, σ_2), f^{-1}(\{b, c\}) = \{a, c\} is not a (τ_1, τ_2)-g^*-p-closed set (X, τ_1, τ_2).

Example 6.4.15: Let X = Y = \{a, b, c\}, τ_1 = \{X, φ, \{a\}, \{b\}, \{a, b\}\}, τ_2 = \{X, φ, \{a\}\} and σ_1 = \{Y, φ, \{a\}, \{b\}, \{a, b\}\}, σ_2 = \{Y, φ, \{a\}, \{a, b\}\}. Then the identity function f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) is D^*P(τ_1, τ_2)-σ_1-continuous but not a D(τ_1, τ_2)-σ_1-continuous.

Remark 6.4.16: The concepts of C(τ_1, τ_2)-σ_k-continuous functions and D^*P(τ_1, τ_2)-σ_k-continuous functions are independent of each other as seen from the following examples.

Example 6.4.17: Let X = Y = \{a, b, c\}, τ_1 = \{X, φ, \{a\}, \{b\}, \{a, b\}\}, τ_2 = \{X, φ, \{a\}\} and σ_1 = \{Y, φ, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}, σ_2 = \{Y, φ, \{a\}, \{a, b\}\}. Define a function f: (X, τ_1, τ_2) \rightarrow (Y, σ_1, σ_2) by f(a) = a, f(b) = c and f(c) = b. Then f is C(τ_1, τ_2)-σ_2-continuous but not D^*P(τ_1, τ_2)-σ_2-continuous.
Example 6.4.18: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{c\}, \{a, b\}\}$, $\tau_2 = \{X, \phi, \{a, b\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$, $\sigma_2 = \{Y, \phi, \{a, b\}\}$. Then the identity function f on X is $D*P(\tau_1, \tau_2)$-\(\sigma_2\)-continuous but not $C(\tau_1, \tau_2)$-\(\sigma_2\)-continuous.

Remark 6.4.19: $D_\ell(\tau_1, \tau_2)$-\(\sigma_k\)-continuous and $D*P(\tau_n, \tau_j)$-\(\sigma_k\)-continuous functions are independent of each other as seen from the following examples.

Example 6.4.20: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{b, c\}\}$, $\tau_2 = \{X, \phi, \{a, b\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}\}$, $\sigma_2 = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$. Then the identity function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D*P(\tau_1, \tau_2)$-\(\sigma_2\)-continuous but not $D_\ell(\tau_1, \tau_2)$-\(\sigma_2\)-continuous function.

Example 6.4.21: In Example 6.4.14, define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = c$, $f(b) = b$ and $f(c) = a$. Then the function f is $D_\ell(\tau_1, \tau_2)$-\(\sigma_2\)-continuous but not $D*P(\tau_1, \tau_2)$-\(\sigma_2\)-continuous.

Remark 6.4.22: The following examples show that $W(\tau_n, \tau_j)$-\(\sigma_k\)-continuous and $D*P(\tau_n, \tau_j)$-\(\sigma_k\)-continuous functions are independent of each other.

Example 6.4.23: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{b, c\}\}$, $\tau_2 = \{X, \phi, \{a\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}, \{c\}, \{a, c\}\}$, $\sigma_2 = \{Y, \phi, \{a\}\}$. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = b$, $f(b) = c$ and $f(c) = a$. Then f is $W(\tau_1, \tau_2)$-\(\sigma_2\)-continuous but not $D*P(\tau_1, \tau_2)$-\(\sigma_2\)-continuous.

Example 6.4.24: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{b\}, \{b, c\}\}$, $\tau_2 = \{X, \phi, \{a, b\}\}$ and $\sigma_1 = \{Y, \phi, \{a\}\}$, $\sigma_2 = \{Y, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then the identity
function \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \(D^*P(\tau_1, \tau_2) \)-\(\sigma_2 \)-continuous but not \(W(\tau_1, \tau_2) \)-\(\sigma_2 \)-continuous.

Theorem 6.4.25: If \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is \(D^*P(\tau_1, \tau_2) \)-\(\sigma_k \)-continuous and \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\)-\(T^*_p \)-space, then \(f \) is \(\tau_j \)-\(\sigma_k \)-continuous.

Proof: Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a \(D^*P(\tau_1, \tau_2) \)-\(\sigma_k \)-continuous function and let \(V \) be a \(\sigma_k \)-closed set in \((Y, \sigma_1, \sigma_2)\). Then \(f^{-1}(V) \) is \((\tau_1, \tau_2) \)-\(g^*p \)-closed set in \((X, \tau_1, \tau_2)\). Since \((X, \tau_1, \tau_2)\) is \((\tau_1, \tau_2)\)-\(T^*_p \)-space, \(f^{-1}(V) \) is \(\tau_j \)-closed set in \((X, \tau_1, \tau_2)\). Therefore \(f \) is \(\tau_j \)-\(\sigma_k \)-continuous function.

Remark 6.4.26: From the above results we have the following implications.
§ 6.5 Some Stronger forms of g^p-Continuous Functions in Bitopological Spaces

In this section, we introduce g^p-bi-continuous functions, g^p-strongly-bi-continuous functions in bitopological spaces. We also study their relations with some existing functions in bitopological spaces. Further we introduce and study the pairwise g^p- irresolute functions in bitopological spaces and obtain some of their properties.

Definition 6.5.1: A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called

i) g^p-bi-continuous if f is $D^P(\tau_1, \tau_2)-\sigma_2$-continuous and $D^P(\tau_2, \tau_1)-\sigma_1$-continuous.

ii) g^p-strongly-bi-continuous (briefly g^p-s-bi-continuous) if f is g^p-bi-continuous, $D^P(\tau_1, \tau_2)-\sigma_1$-continuous and $D^P(\tau_2, \tau_1)-\sigma_2$-continuous.

Theorem 6.5.2: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function.

i) If f is bi-continuous then f is g^p-bi-continuous.

ii) If f is s-bi-continuous then f is g^p-s-bi-continuous.

Proof: i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a bi-continuous function. Then f is $\tau_1-\sigma_1$-continuous and $\tau_2-\sigma_2$-continuous. By Theorem 6.4.3, f is $D^P(\tau_1, \tau_2)-\sigma_2$-continuous and $D^P(\tau_2, \tau_1)-\sigma_1$-continuous. Thus f is g^p-bi-continuous.

(ii) Similar to (i), using Theorem 6.4.3.

The converse of the above theorem need not be true as seen from the following example.
Example 6.5.3: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}\}$ and $\tau_2 = \{X, \phi, \{b, c\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi, \{p\}\}$ and $\sigma_2=\mathcal{P}(Y)$. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y,\sigma_1, \sigma_2)$ by $f(a) = p$ and $f(b) = f(c) = q$. Then f is g^*p-s-bi-continuous but not s-bi-continuous. This function is also g^*p-bi-continuous but not bi-continuous.

Theorem 6.5.4: Let $f: (X, \tau_1, \tau_2) \rightarrow (Y,\sigma_1, \sigma_2)$ be a function.

i) If f is g^*p-bi-continuous, then f is gpr-bi-continuous.

ii) If f is g^*p-s-bi-continuous, then f is gpr-s-bi-continuous.

Proof: i) Let $f: (X, \tau_1, \tau_2) \rightarrow (Y,\sigma_1, \sigma_2)$ be a g^*p-bi-continuous function. Then f is $D^*P(\tau_1, \tau_2)$-σ_2-continuous and $D^*P(\tau_2, \tau_1)$-σ_1-continuous. By Theorem 6.4.7, f is $\zeta(\tau_1, \tau_2)$-σ_2-continuous and $\zeta(\tau_2, \tau_1)$-σ_1-continuous. Thus f is gpr-bi-continuous.

(ii) Similar to (i), using Theorem 6.4.7.

The converse of the above theorem need not be true as seen from the following example.

Example 6.5.5: Let $X = Y= \{a, b, c\}$, $\tau_1 = \{X,\emptyset, \{a\}\}$, $\{b\}$, $\{a, b\}\}$, $\tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$, $\{a, c\}\}$ and $\sigma_1=\{Y, \phi, \{a\}, \{b\}$, $\{a, c\}$, $\{a, c\}$ and $\sigma_2=\{Y, \phi, \{b\}$, $\{c\}$, $\{a, c\}$, $\{b, c\}\}$. Define a function $f: (X, \tau_1, \tau_2) \rightarrow (Y,\sigma_1, \sigma_2)$ by $f(a) = c$, $f(b) = a$ and $f(c) = b$. Then f is gpr-bi-continuous but not a g^*p-bi-continuous, since for the σ_2-closed set $\{a, c\}$ in (Y,σ_1, σ_2), $f'(\{a, c\}) = \{a, b\}$ is not (τ_1, τ_2)-g^*p-closed set but it is (τ_1, τ_2)-gpr-closed set in (X, τ_1, τ_2). This function is also gpr-s-bi-continuous but not g^*p-s-bi-continuous.
Theorem 6.5.6: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function.

i) If f is g^*-bi-continuous then f is g^*-p-bi-continuous.

ii) If f is g^*-s-bi-continuous then f is g^*-p-s-bi-continuous.

Proof: i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a g^*-bi-continuous. Then f is $D^*(\tau_1, \tau_2)-\sigma_2$-continuous and $D^*(\tau_2, \tau_1)-\sigma_1$-continuous. By Theorem 6.4.11, f is $D^*P(\tau_1, \tau_2)-\sigma_2$-continuous and $D^*P(\tau_2, \tau_1)-\sigma_1$-continuous. Thus f is g^*-p-bi-continuous.

(ii) Similar to (i), using Theorem 6.4.11.

The converse of the above theorem need not be true as seen from the following example.

Example 6.5.7: Let $X = Y = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}\}$, $\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\sigma_1 = \{Y, \emptyset, \{a\}\}$, $\sigma_2 = \{Y, \emptyset, \{a\}, \{a, c\}\}$. Then the identity function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is g^*-p-bi-continuous but not g^*-bi-continuous, since for the σ_2-closed set $\{b\}$ in (Y, σ_1, σ_2), $f^{-1}(\{b\}) = \{b\}$ is not (τ_1, τ_2)-g^*-closed set but it is (τ_1, τ_2)-g^*-p-closed set in (X, τ_1, τ_2). This function is also g^*-p-s-bi-continuous but not g^*-s-bi-continuous.

Theorem 6.5.8: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function.

i) If f is αg^* -bi-continuous then f is g^*-p-bi-continuous.

ii) If f is αg^*-s-bi-continuous then f is g^*-p-s-bi-continuous.

Proof: i) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a αg^*-s-bi-continuous. Then f is $\alpha^*(\tau_1, \tau_2)-\sigma_2$-continuous and $\alpha^*(\tau_2, \tau_1)-\sigma_1$-continuous. By Theorem 6.4.5, f is $D^*P(\tau_1, \tau_2)-\sigma_2$-continuous and $D^*P(\tau_2, \tau_1)-\sigma_1$-continuous. Thus f is g^*-p-bi-continuous.

(ii) Similar to (i), using Theorem 6.4.5.
The converse of the above theorem need not be true as seen from the following example.

Example 6.5.9: Let \(X = Y = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{b\}, \{b, c\}\} \) and \(\sigma_1 = \{Y, \phi, \{a\}\} \) and \(\sigma_2 = \{Y, \phi, \{b\}, \{a, c\}\} \). Define a function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = a \), \(f(b) = b \) and \(f(c) = c \). Then the function \(f \) is \(g^*p\)-bi-continuous (resp. \(g^*p\)-s-bi-continuous) but not \(\alpha g^*s\)-bi-continuous (resp. \(\alpha g^*s\)-s-bi-continuous) function.

Remark 6.5.10: \(g^*p\)-bi-continuous functions and \(g\)-bi-continuous functions are independent of each other as seen from the following examples.

Example 6.5.11: In Example 6.5.5, the function \(f \) is \(g\)-bi-continuous but not \(g^*p\)-bi-continuous function.

Example 6.5.12: Let \(X = Y = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a, c\}\} \), \(\tau_2 = \{X, \phi, \{b\}, \{b, c\}\} \) and \(\sigma_1 = \{Y, \phi, \{a\}\} \), \(\sigma_2 = \{Y, \phi, \{b\}, \{a, c\}\} \). Then the identity function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(g^*p\)-bi-continuous \(f \) but it is not \(g\)-bi-continuous function.

Remark 6.5.13: \(g^*p\)-s-bi-continuous functions and \(g\)-s-bi-continuous functions are independent of each other as seen from the following examples.

Example 6.5.14: In Example 6.5.5, the function \(f \) is \(g\)-s-bi-continuous but not a \(g^*p\)-s-bi-continuous function.

Example 6.5.15: In Example 6.5.12, the function \(f \) is \(g^*p\)-s-bi-continuous but it is not \(g\)-s-bi-continuous function.
Remark 6.5.16: From the above results we get the following implications.

\[\text{g-bi-continuous} \leftrightarrow \text{g*-bi-continuous} \rightarrow \text{gpr-bi-continuous} \]

Definition 6.5.17: A function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called pairwise g*p- irresolute function if \(f^{-1}(A) \in D^*P(\tau_i, \tau_j) \) in \((X, \tau_1, \tau_2) \) for every \(A \in D^*P(\sigma_k, \sigma_l) \) in \((Y, \sigma_1, \sigma_2) \).

Remark 6.5.18: If \(\tau_1 = \tau_2 = \tau \) and \(\sigma_1 = \sigma_2 = \sigma \) simultaneously, then \(f \) becomes a g*p-irresolute function [120].

Theorem 6.5.19: If a function \(f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is pairwise g*p - irresolute then \(f \) is \(D^*P(\tau_i, \tau_j) - \sigma_k \)-continuous.

Proof: Let \(F \) be any \(\sigma_k \)- closed set in \((Y, \sigma_1, \sigma_2) \). Then \(F \) is \(\in D^*P(\sigma_k, \sigma_2) \) in \((Y, \sigma_1, \sigma_2) \). Since \(f \) is pairwise g*p-irresolute, \(f^{-1}(F) \in D^*P(\tau_i, \tau_j) \) in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D^*P(\tau_i, \tau_j) - \sigma_k \)-continuous function.
The converse of the above theorem need not be true as seen from the following example.

Example 6.5.20: Let \(X = Y = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \), \(\tau_2 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\} \) and \(\sigma_1 = \{Y, \phi, \{a\}, \{b\}, \{a, c\}\} \), \(\sigma_2 = \{Y, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\} \). Define a function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) by \(f(a) = b \), \(f(b) = a \) and \(f(c) = c \). Then \(f \) is \(D^*P(\tau_1, \tau_2) \)-\(\sigma_2 \)-continuous but not a pairwise \(g^*p \)-irresolute.

Theorem 6.5.21: A function \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is pairwise \(g^*p \)-irresolute if and only if for every \((\sigma_k, \sigma_\ell) \)-\(g^*p \)-open set \(A \) in \((Y, \sigma_1, \sigma_2) \), the inverse image \(f^{-1}(A) \) is \((\tau_i, \tau_j) \)-\(g^*p \)-open in \((X, \tau_1, \tau_2) \).

Theorem 6.5.22: If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) are pairwise \(g^*p \)-irresolute functions, then their composition \(gof \) is also pairwise \(g^*p \)-irresolute.

Proof: Let \(A \in (\eta_\ell, \eta_n) \) in \((Z, \eta_1, \eta_2) \). Since \(g \) is pairwise \(g^*p \)-irresolute, \(g^{-1}(A) \in D^*P(\sigma_k, \sigma_\ell) \) in \((Y, \sigma_1, \sigma_2) \). By hypothesis, \(f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in D^*P(\tau_i, \tau_j) \) in \((X, \tau_1, \tau_2) \). Thus \(gof \) is pairwise \(g^*p \)-irresolute function.

Theorem 6.5.23: If \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) and \(g : (Y, \sigma_1, \sigma_2) \rightarrow (Z, \eta_1, \eta_2) \) be any two functions. Then

i) \(gof : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is \(D^*P(\tau_i, \tau_j) \)-\(\eta_n \)-continuous if \(g \) is \(\sigma_\ell \)-\(\eta_n \)-continuous and \(f \) is \(D^*(\tau_i, \tau_j) \)-\(\sigma_k \)-continuous.

ii) \(gof : (X, \tau_1, \tau_2) \rightarrow (Z, \eta_1, \eta_2) \) is \(D^*P(\tau_i, \tau_j) \)-\(\eta_n \)-continuous if \(f \) is pairwise \(g^*p \)-irresolute and \(g \) is \(D^*(\sigma_k, \sigma_\ell) \)-\(\eta_n \)-continuous.

Proof: i) Let \(A \) be any \(\eta_n \)-open set in \((Z, \eta_1, \eta_2) \). Since \(g \) is \(\sigma_\ell \)-\(\eta_n \)-continuous, we have \(g^{-1}(A) \) is \(\sigma_\ell \)-open set in \((Y, \sigma_1, \sigma_2) \). Again since \(f \) is \(D^*P(\tau_i, \tau_j) \)-\(\sigma_k \)-
continuous, \(f^{-1}(g^{-1}(A)) \) is \((\tau_i, \tau_j)-\text{g*p-closed}\) in \((X, \tau_i, \tau_j)\). But \(f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \). Hence \(\text{gof} \) is \(\text{D*P}(\tau_i, \tau_j)-\eta_n\)-continuous.

(ii) Let \(A \) be any \(\eta_n\)-open set in \((Z, \eta_1, \eta_2)\). Since \(g \) is \(\text{D}(\sigma_k, \sigma_2)-\eta_n\)-continuous, we have \(g^{-1}(A) \) is \((\sigma_k, \sigma_2)-\text{g*p-closed}\) set in \((Y, \sigma_1, \sigma_2)\). Again since \(f \) is pairwise \(\text{g*p-irresolute}, \) \(f^{-1}(g^{-1}(A)) \) is \((\tau_i, \tau_j)-\text{g*p-closed}\) in \((X, \tau_i, \tau_j)\). But \(f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \). Hence \(\text{gof} \) is \(\text{D*P}(\tau_i, \tau_j)-\eta_n\)-continuous.

Theorem 6.5.24: Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a \(\text{D*P}(i, j)-\sigma_k\)-continuous function.

(i) If \((X, \tau_1, \tau_2)\) is a \(T_{p^*}\)-space, then \(f \) is \(\tau_j-\sigma_k\)-continuous.

(ii) If \((X, \tau_1, \tau_2)\) is a \(\alpha T_{p^*}\)-space, then \(f \) is \(\tau_j-\sigma_k\)-precontinuous.

Proof: (i) Let \((X, \tau_1, \tau_2)\) is a \(T_{p^*}\)-space and \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a \(\text{D*P}(i, j)-\sigma_k\)-continuous. Let \(V \) be a \(\sigma_k\)-closed set. Then \(f^{-1}(V) \) is \((i, j)-\text{g*p-closed}\) in \((X, \tau_1, \tau_2)\). Since \((X, \tau_1, \tau_2)\) is a \(T_{p^*}\)-space, \(f^{-1}(V) \) is \(\tau_j\)-closed. Thus \(f \) is \(\tau_j-\sigma_k\)-continuous.

(ii) Similar to (i).