CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>Determination of Stability Constants</td>
<td>28</td>
</tr>
<tr>
<td>2.1</td>
<td>Methods of determination of Stability Constants</td>
<td>32</td>
</tr>
<tr>
<td>2.1.1</td>
<td>The method based on pH measurements</td>
<td>32</td>
</tr>
<tr>
<td>2.1.2</td>
<td>The theoretical basis</td>
<td>33</td>
</tr>
<tr>
<td>2.1.3</td>
<td>Experimental methods</td>
<td>36</td>
</tr>
<tr>
<td>2.1.4</td>
<td>Calculation of \bar{n}_A and \bar{n} values</td>
<td>37</td>
</tr>
<tr>
<td>2.1.5</td>
<td>Measurement of pH in water-organic solvent media</td>
<td>41</td>
</tr>
<tr>
<td>2.1.6</td>
<td>Calculation of pL</td>
<td>43</td>
</tr>
<tr>
<td>2.1.7</td>
<td>Methods of determining the Stoichiometric Stability constants</td>
<td>44</td>
</tr>
<tr>
<td>2.1.8</td>
<td>The method of Bjerrum</td>
<td>45</td>
</tr>
<tr>
<td>2.1.9</td>
<td>The least square method of Irving and Rossotti</td>
<td>48</td>
</tr>
<tr>
<td>2.1.10</td>
<td>Thermodynamic quantities from stability Constants</td>
<td>50</td>
</tr>
<tr>
<td>2.2</td>
<td>Adduct formation constants of nickel(II) chelate with bases</td>
<td>52</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1.1</td>
<td>Preparation of diphenylcarbazone</td>
<td>58</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Preparation of di(o-tolyl)carbazone</td>
<td>59</td>
</tr>
</tbody>
</table>
3.1.3 Preparation of di(o-ethylphenyl)carbazone 62
3.1.4 Preparation of di(o-chlorophenyl)carbazone 64
3.1.5 Preparation of di(m-chlorophenyl)carbazone 65
3.1.6 Preparation of di(p-chlorophenyl)carbazone 65
3.1.7 Preparation of di(2-methyl, 5-nitrophenyl)-carbazone 65
3.1.8 Preparation of di(2-methyl, 4-nitrophenyl)-carbazone 68
3.1.9 Preparation of di(p-nitrophenyl)carbazone 68
3.2 Preparation of various solutions 69
3.2.1 Preparation of sodium hydroxide solution 69
3.2.2 Preparation of sodium perchlorate solution 70
3.2.3 Preparation of perchloric acid solution 70
3.2.4 Preparation of metal salt solutions 71
3.2.5 Preparation of solutions of reagents 71
3.2.6 Purification of solvents and nitrogen bases 71
3.2.7 Preparation of metal complexes 72
3.3 Analysis of ligands and complexes 73
3.4 Magnetic susceptibility measurements 74
3.5 Electronic spectra 75
3.6 Infra-red spectra 75
3.7 Nuclear Magnetic Resonance Spectra 75
3.8 Mass spectra 76
3.9 Electron Spin Resonance Spectra

3.10 Apparatus

3.11 Experimental details of Calvin-Bjerrum titrations

4. Calculation of \bar{n}_A and acid dissociation constants

4.2 Calculation of formation constants

4.2.1 Calculation of \bar{n} values

4.2.2 Calculation of pL values

4.2.3 Log K values

4.3 Solution of formation functions

4.3.1 Reliability \bar{n} values

4.3.2 Value of N

4.3.3 Calculation of formation constants

4.4 Estimation of thermodynamic quantities

4.5 Results and discussion

5. Reactions of nitrogen bases with nickel(II) chelate of di(o-chlorophenyl)carbazone

5.1 Reactions of nitrogen bases with nickel(II) chelate of di(o-chlorophenyl)carbazone

5.2 Reactions of nitrogen bases with nickel(II) chelate of di(o-ethylphenyl)carbazone

5.3 Reactions of nitrogen bases with nickel(II) chelate of diphenylcarbazone
5.4 Reactions of nitrogen bases with nickel(II) chelate of di(o-tolyl)carbazone 172
5.5 Results and discussion 180

6. Development of donor-acceptor compounds 194
6.2 Classification of ligands 195
6.3 Classification of metal ions 196
6.4 Chelate effect 197
6.5 Characterization studies 199
6.5.1 IR Spectra 200
6.5.2 NMR spectroscopy 200
6.5.3 EPR spectroscopy 202
6.5.4 X-ray crystallography 204
6.5.5 Magnetic moment measurements 206
6.5.6 Thermoanalytical studies 206
6.6 Objectives and achievements of the present investigation 207
6.7 Results and discussion 208