CHAPTER-V
rw-CLOSED SETS AND rw-CONTINUOUS MAPS IN
BITOPOLOGICAL SPACES

5.1 Introduction.

The triple \((X, \tau_1, \tau_2) \) where \(X \) is a set and \(\tau_1 \) and \(\tau_2 \) are topologies on \(X \) is called a bitopological space. Kelly [45] initiated the systematic study of such spaces in 1963. He generalized the topological concepts to bitopological setting and published a large number of papers. Following the work of Kelly on the bitopological spaces, various authors, like Arya and Nour [7], Di Maio and Noiri [24], Fukutake [34], Nagaveni [65], Maki, Sundaram and Balachandran [55], Sheik John [85], Sampath Kumar[82], Patty [77], Arockiarani [3], Gnanambal [40], Reilly [8], Rajamani and Viswanthan [80], and Popa [78] have turned their attention to the various concepts of topology by considering bitopological spaces instead of topological spaces.

In chapter II, we have introduced and studied the concept of rw-closed sets, rw-open sets and rw-closure operator in topological spaces. In chapter III, we have introduced and investigated some properties of rw-continuous maps and rw-irresolute maps in topological spaces.

In section 2 of this chapter, \((i, j) \)-rw-closed sets in bitopological space have been introduced and studied. Among many other results it is observed that every \((i, j) \)-w-closed set is \((i, j) \)-rw-closed set which implies \((i, j) \)-rg-closed set but not conversely.

In section 3 of this chapter, we have introduced \((i, j) \)-rw-open sets in bitopological space and study some of their properties. In section 4 of this chapter, we shall use the \((i, j) \)-rw-closed subsets of bitopological space \((X, \tau_1, \tau_2) \) to define a new closure operator “(i, j)-rw-cl”, and thus

- 133 -
new topology \(\tau_{rw}(i, j) \) on the space and shall examine some of the properties of this new topology.

In section 5 of this chapter, a new class of maps called \(D_{rw}(i, j) - \sigma_k \)-continuous maps in bitopological spaces are introduced and investigated. During this process, some of their properties are obtained. It is found that every \(C(i, j) - \sigma_k \)-continuous map is \(D_{rw}(i, j) - \sigma_k \)-continuous which implies \(D(i, j) - \sigma_k \)-continuous but not conversely. Also, we have introduced the concept of \(rw \)-bi-continuity, \(rw \)-s-bi-continuity and pairwise \(rw \)-irresolute in bitopological spaces and study some of their properties.

Throughout this chapter \((X, \tau_i, \tau_2), (Y, \sigma_1, \sigma_2)\) and \((Z, \eta_1, \eta_2)\) denote nonempty bitopological spaces on which no separation axioms are assumed, unless otherwise mentioned and fixed integers \(i, j, k, e, m, n \in \{1, 2\} \).

5.2 \((\tau_i, \tau_j)\)-rw-closed sets and their basic properties.

In this section, we introduce and investigate the concept of \((\tau_i, \tau_j)\)-rw-closed sets which are introduced in a bitopological space in analogy with \(rw \)-closed sets in topological spaces. From now on, \(\tau \)-cl(A) denotes the closure of A relative to a topology \(\tau \).

5.2.1 Definition: Let \(i, j \in \{1, 2\} \) be fixed integers. In a bitopological space \((X, \tau_1, \tau_2)\), a subset \(A \subset X \) is said to be \((\tau_i, \tau_j)\)-rw-closed (briefly, \((i, j)\)-rw-closed) set if \(\tau_j\)-cl(A) \(\subset \) G and \(G \in \text{RSO}(X, \tau_i) \).

We denote the family of all \((i, j)\)-rw-closed sets in a bitopological space \((X, \tau_1, \tau_2)\) by \(D_{rw}(\tau_i, \tau_j) \) or \(D_{rw}(i, j) \).

5.2.2 Remark: By setting \(\tau_1 = \tau_2 \) in Definition 5.2.1, an \((i, j)\)-rw-closed set reduces to a \(rw \)-closed set in \(X \).
First we prove that the class of \((i, j)\)-rw-closed sets properly lies between the class of \((i, j)\)-w-closed sets and the class of \((i, j)\)-rg-closed sets.

5.2.3 Theorem: If \(A\) is \((i, j)\)-w-closed subset of \((X, \tau_1, \tau_2)\), then \(A\) is \((i, j)\)-rw-closed.

Proof: Let \(A\) be a \((i, j)\)-w-closed subset of \((X, \tau_1, \tau_2)\). Let \(G \in \text{RSO}(X, \tau_i)\) be such that \(A \subseteq G\). Since \(\text{RSO}(X, \tau_i) \subseteq \text{SO}(X, \tau_i)\), we have \(G \in \text{SO}(X, \tau_i)\). Then by hypothesis, \(\tau_j-\text{cl}(A) \subseteq G\). Therefore \(A\) is \((i, j)\)-rw-closed.

The converse of this theorem need not be true as seen from the following example.

5.2.4 Example: Let \(X = \{a, b, c\}\), \(\tau_1 = \{X, \phi, \{a\}\}\) and \(\tau_2 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}\). Then the subsets \{a\}, \{b\} and \{a, b\} are \((1, 2)\)-rw-closed sets, but not \((1, 2)\)-w-closed sets in the bitopological space \((X, \tau_1, \tau_2)\).

5.2.5 Theorem: If \(A\) is a \((i, j)\)-rw-closed subset of \((X, \tau_1, \tau_2)\), then \(A\) is \((i, j)\)-rg-closed.

Proof: Let \(A\) be a \((i, j)\)-rw-closed subset of \((X, \tau_1, \tau_2)\). Let \(G \in \text{RO}(X, \tau_i)\) be such that \(A \subseteq G\). Since \(\text{RO}(X, \tau_i) \subset \text{RSO}(X, \tau_i)\), we have \(G \in \text{RSO}(X, \tau_i)\). Then by hypothesis, \(\tau_j-\text{cl}(A) \subseteq G\). Therefore \(A\) is \((i, j)\)-rg-closed.

The converse of this theorem need not be true as seen from the following example.

5.2.6 Example: Let \(X = \{a, b, c, d\}\), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}\) and \(\tau_2 = \{X, \phi, \{a, b\}, \{c, d\}\}\). Then the subsets \{c\}, \{d\}, \{b, c\}, \{b, d\}, \{a, c\}, \{a, c, d\}, and \{b, c, d\} are \((1, 2)\)-rg-closed sets, but not \((1, 2)\)-rw-closed sets in the bitopological space \((X, \tau_1, \tau_2)\).
5.2.7 Theorem: If A is τ_j-closed subset of a bitopological space (X, τ_1, τ_2), then the set A is (i, j)-rw-closed.

Proof: Let $G \in \mathcal{RSO}(X, \tau_i)$ be such that $A \subseteq G$. Then by hypothesis, $\tau_j\text{-cl}(A) = A$, which implies $\tau_j\text{-cl}(A) \subseteq G$. Therefore A is (i, j)-rw-closed.

The converse of this theorem need not be true as seen from the following example.

5.2.8 Example: Let $X = \{a, b, c\}$, $\tau_i=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b, c\}\}$. Then the subset $\{a, b\}$ is $(1, 2)$-rw-closed set, but not a τ_2-closed set in the bitopological space (X, τ_1, τ_2).

5.2.9 Remark: τ_j-w-closed sets and (i, j)-rw-closed sets are independent as seen from the following examples.

5.2.10 Example: Let $X = \{a, b, c\}$, $\tau_i=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a, b\}\}$. Then the subset $\{a\}$ is $(1, 2)$-rw-closed set, but not τ_2-w-closed set in the bitopological space (X, τ_1, τ_2).

5.2.11 Example: Let $X = \{a, b, c\}$, $\tau_i=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a, b\}, \{b, c\}\}$. Then the subsets $\{b\}, \{c\}$ and $\{a, c\}$ are τ_2-w-closed sets but not $(1, 2)$-rw-closed sets in the bitopological space (X, τ_1, τ_2).

5.2.12 Remark: τ_j-rg-closed sets and (i, j)-rw-closed sets are independent as seen from the following examples.

5.2.13 Example: Let $X = \{a, b, c\}$, $\tau_i=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}\}$. Then the subsets $\{a\}, \{b\}, \{c\}$ and $\{a, c\}$ are τ_2-rg-closed sets but not $(1, 2)$-rw-closed sets in the bitopological space (X, τ_1, τ_2).
5.2.14 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then the subsets $\{a\}, \{b\}$ are $(1, 2)$-rw-closed sets, but not τ_2-rg-closed sets in the bitopological space (X, τ_1, τ_2).

5.2.15 Remark: (i, j)-g-closed sets and (i, j)-rw-closed sets are independent as seen from the following examples.

5.2.16 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}\}$. Then the subsets $\{b\}$ and $\{a, b\}$ are $(1, 2)$-rw-closed sets, but not $(1, 2)$-g-closed sets in the bitopological space (X, τ_1, τ_2).

5.2.17 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{a, b\}\}$. Then the subset $\{a, c\}$ is a $(1, 2)$-g-closed set but not a $(1, 2)$-rw-closed set in the bitopological space (X, τ_1, τ_2).

5.2.18 Theorem: If A is a (i, j)-rw-closed subset of (X, τ_i, τ_2), then A is (i, j)-gpr-closed.

Proof: Let A be a (i, j)-rw-closed subset of (X, τ_i, τ_2). Let $G \in RO(X, \tau_i)$ be such that $A \subset G$. Since $RO(X, \tau_i) \subset RSO(X, \tau_i)$, we have $G \in RSO(X, \tau_i)$. Then by hypothesis, τ_i-cl(A) $\subset G$. Also τ_i-pcl(A) $\subset \tau_i$-cl(A) which implies τ_i-pcl(A) $\subset G$. Therefore A is (i, j)-gpr-closed.

The converse of this theorem need not be true as seen from the following example.

5.2.19 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \emptyset, \{a\}, \{b, c\}\}$. Then the subsets $\{b\}, \{c\}$ and $\{a, c\}$ are $(1, 2)$-gpr-closed sets but not $(1, 2)$-rw-closed sets in the bitopological space (X, τ_1, τ_2).

5.2.20 Remark: (i, j)-wg-closed sets and (i, j)-rw-closed sets are independent as seen from the following examples.
5.2.21 Example: Let $X= \{a, b, c\}$, $\tau_1=\{X, \emptyset, \{a\}, \{a, b\}\}$ and $\tau_2=\{X, \emptyset, \{b\}, \{a\}\}$. Then the subset $\{a, b\}$ is a (1, 2)-rw-closed set but not a (1, 2)-wg-closed set in the bitopological space (X, τ_1, τ_2).

5.2.22 Example: Let $X= \{a, b, c\}$, $\tau_1=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \emptyset, \{c\}, \{b, c\}\}$. Then the subsets $\{c\}$, $\{b, c\}$, and $\{a, c\}$ are (1, 2)-wg-closed sets but not (1, 2)-rw-closed sets in the bitopological space (X, τ_1, τ_2).

5.2.23 Remark: (i, j)-gp-closed sets and (i, j)-rw-closed sets are independent as seen from the following examples.

5.2.24 Example: Let $X= \{a, b, c\}$, $\tau_1=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \emptyset, \{a\}, \{b, c\}\}$. Then the subset $\{a, c\}$ is a (1, 2)-gp-closed set, but not a (1, 2)-rw-closed set in the bitopological space (X, τ_1, τ_2).

5.2.25 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \emptyset, \{a\}\}$ and $\tau_2=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$. Then the subset $\{a\}$ is a (1, 2)-rw-closed set, but not a (1, 2)-gp-closed set in the bitopological space (X, τ_1, τ_2).

5.2.26 Remark: (i, j)-g^*-closed sets and (i, j)-rw-closed sets are independent as seen from the following example.

5.2.27 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \emptyset, \{c\}, \{b, c\}\}$. Then the subset $\{a\}$ is a (1, 2)-rw-closed set, but not a (1, 2)-g^*-closed set. Also the subset $\{b, c\}$ is a (1, 2)-g^*-closed set but not a (1, 2)-rw-closed set in the bitopological space (X, τ_1, τ_2).

5.2.28 Remark: From the above discussions and known results we have the following implications. Here

\[\text{A} \rightarrow \text{B} \text{ means A implies B, but not conversely and } \]

\[\text{A} \leftrightarrow \text{B} \text{, means A and B are independent of each other} \]
5.2.29 Theorem: If $A, B \in D_{rw}(i, j)$, then $A \cup B \in D_{rw}(i, j)$.

Proof: Let $G \in RSO(X, \tau_i)$ be such that $A \cup B \subseteq G$. Then $A \subseteq G$ and $B \subseteq G$. Since $A, B \in D_{rw}(i, j)$, we have $\tau_i \text{-cl}(A) \subseteq G$ and $\tau_i \text{-cl}(B) \subseteq G$. That is $\tau_i \text{-cl}(A) \cup \tau_i \text{-cl}(B) \subseteq G$. Also $\tau_i \text{-cl}(A) \cup \tau_i \text{-cl}(B) = \tau_i \text{-cl}(A \cup B)$ and so $\tau_i \text{-cl}(A \cup B) \subseteq G$. Therefore $A \cup B \in D_{rw}(i, j)$.

5.2.30 Remark: The intersection of two (i, j)-rw-closed sets is generally not a (i, j)-rw-closed set as seen from the following example.

5.2.31 Example: Let $X=\{a, b, c, d\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then the subsets $\{a, b\}$ and $\{a, c, d\}$ are $(1, 2)$-rw-closed sets, but $\{a, b\} \cap \{a, c, d\} = \{a\}$ is not a $(1, 2)$-rw-closed set in the bitopological space (X, τ_1, τ_2).

5.2.32 Remark: The family $D_{rw}(1, 2)$ is generally not equal to the family $D_{rw}(2, 1)$ as seen from the following example.

5.2.33 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{c\}, \{b, c\}\}$. Then $D_{rw}(1, 2)=\{X, \phi, \{a\}, \{a, b\}\}$ and $D_{rw}(2, 1)=\{X, \phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Therefore $D_{rw}(1, 2) \neq D_{rw}(2, 1)$.

- 139 -
5.2.34 Theorem: If \(\tau_1 \subset \tau_2 \) and \(\text{RSO}(X, \tau_1) \subset \text{RSO}(X, \tau_2) \) in \((X, \tau_1, \tau_2)\), then \(D_{rw}(\tau_1, \tau_2) \supset D_{rw}(\tau_2, \tau_1) \).

Proof: Let \(A \in D_{rw}(\tau_2, \tau_1) \). That is \(A \) is a \((2, 1)\)-rw-closed set. To prove that \(A \in D_{rw}(\tau_1, \tau_2) \). Let \(G \in \text{RSO}(X, \tau_1) \) be such that \(A \subset G \). Since \(\text{RSO}(X, \tau_1) \subset \text{RSO}(X, \tau_2) \), we have \(G \in \text{RSO}(X, \tau_2) \). As \(A \) is a \((2, 1)\)-rw-closed set, we have \(\tau_1-cl(A) \subset G \). Since \(\tau_1 \subset \tau_2 \), we have \(\tau_2-cl(A) \subset \tau_1-cl(A) \) and it follows that \(\tau_2-cl(A) \subset G \). Hence \(A \) is \((1, 2)\)-rw-closed. That is \(A \in D_{rw}(\tau_1, \tau_2) \). Therefore \(D_{rw}(\tau_1, \tau_2) \supset D_{rw}(\tau_2, \tau_1) \).

5.2.35 Theorem: Let \(i, j \) be fixed integers of \(\{1, 2\} \). For each \(x \) of \((X, \tau_1, \tau_2)\), \(\{x\} \) is a regular semiopen in \((X, \tau_i)\) or \(\{x\}^c \) is \((i, j)\)-rw-closed.

Proof: Suppose \(\{x\} \) is not regular semiopen in \((X, \tau_i)\). Then \(\{x\}^c \) is not regular semiopen in \((X, \tau_i)\). Now regular semiopen in \((X, \tau_i)\) containing \(\{x\}^c \) is \(X \) alone. Also \(\{x\}^c \) is \((i, j)\)-rw-closed.

5.2.36 Theorem: If \(A \) is \((i, j)\)-rw-closed, then \(\tau_i-cl(A)-A \) contains no non-empty \(\tau_i \)-regular semiopen set.

Proof: Let \(A \) be a \((i, j)\)-rw-closed set. Suppose \(F \) is a non-empty \(\tau_i \)-regular semiopen set contained in \(\tau_i-cl(A)-A \). Now \(F \subset X-A \) which implies \(A \subset F^c \). Also \(F^c \) is a \(\tau_i \)-regular semiopen. Since \(A \) is a \((i, j)\)-rw-closed set, we have \(\tau_i-cl(A) \subset F^c \). Consequently \(F \subset \tau_i-cl(A) \cap (\tau_i-cl(A))^c = \emptyset \), which is a contradiction. Hence \(\tau_i-cl(A)-A \) does not contains any non-empty \(\tau_i \)-regular semiopen set.

The converse of this theorem does not hold as seen from the following example.

5.2.37 Example: Let \(X=\{a, b, c\}, \quad \tau_1=\{X, \phi, \{b\}, \{a, c\}\} \) and \(\tau_2=\{X, \phi, \{a, \}\} \). If \(A=\{b\} \), then \(\tau_i-cl(A)-A = \{b, c\}-\{b\} = \{c\} \) does not contain any
non-empty τ_i-regular semiopen set. But A is not a $(1, 2)$-rw-closed set in the bitopological space (X, τ_1, τ_2).

5.2.38 Corollary: If A is (i, j)-rw-closed in (X, τ_i, τ_j), then A is τ_j-closed if and only if τ_j-cl(A) - A is a τ_i-regular semiopen set.

Proof: Suppose A is τ_j-closed. Then τ_j-cl(A) = A and so τ_j-cl(A) - A = \emptyset, which is a τ_i-regular semiopen set.

Conversely, suppose τ_j-cl(A) - A is a τ_i-regular semiopen. Since A is (i, j)-rw-closed, by Theorem 5.2.36, τ_j-cl(A) - A does not contain any non-empty τ_i-regular semiopen set. Therefore τ_j-cl(A) - A = \emptyset. That is τ_j-cl(A) = A and hence A is τ_j-closed.

5.2.39 Theorem: In a bitopological space (X, τ_i, τ_j), $\text{RSO}(X, \tau_i) \subseteq \{F \subseteq X : F \in \tau_j\}$ if and only if every subset of (X, τ_i, τ_j) is a (i, j)-rw-closed set.

Proof: Suppose that $\text{RSO}(X, \tau_i) \subseteq \{F \subseteq X : F \in \tau_j\}$. Let A be any subset of X. Let $G \in \text{RSO}(X, \tau_i)$ be such that $A \subseteq G$. Then τ_j-cl(G) = G. Also τ_j-cl(A) \subseteq τ_j-cl(G) = G. That is τ_j-cl(A) \subseteq G. Therefore A is a (i, j)-rw-closed set.

Conversely, suppose that every subset of (X, τ_i, τ_j) is a (i, j)-rw-closed set. Let $G \in \text{RSO}(X, \tau_i)$. Since $G \subseteq G$ and G is (i, j)-rw-closed, we have τ_j-cl(G) \subseteq G. Thus τ_j-cl(G) = G and so G is τ_j-closed. That is $G \in \{F \subseteq X : F \in \tau_j\}$. Hence $\text{RSO}(X, \tau_i) \subseteq \{F \subseteq X : F \in \tau_j\}$.

5.2.40 Theorem: Let A be a (i, j)-rw-closed subset of a bitopological space (X, τ_i, τ_j). If A is τ_i-regular semiopen, then A is τ_j-closed.

Proof: Let A be τ_i-regular semiopen. Now $A \subseteq A$. Then by hypothesis τ_j-cl(A) \subseteq A. Therefore τ_j-cl(A) = A. That is A is τ_j-closed.
5.2.41 **Theorem:** If A is a (i, j)-rw-closed set and $\tau_i \subset \text{RSO}(X, \tau_i)$, then $\tau_j\text{-cl}({x}) \cap A \neq \emptyset$ for each $x \in \tau_j\text{-cl}(A)$.

Proof: Let A be (i, j)-rw-closed and $\tau_i \subset \text{RSO}(X, \tau_i)$. Suppose $\tau_i\text{-cl}({x}) \cap A = \emptyset$ for some $x \in \tau_j\text{-cl}(A)$, then $A \subset (\tau_i\text{-cl}({x}))^c$. Now $(\tau_i\text{-cl}({x}))^c \in \tau_i \subset \text{RSO}(X, \tau_i)$, by hypothesis. That is $(\tau_i\text{-cl}({x}))^c$ is τ_i-regular semiopen. Since A is (i, j)-rw-closed, we have $\tau_j\text{-cl}(A) \subset (\tau_i\text{-cl}({x}))^c$. This shows that $x \notin \tau_j\text{-cl}(A)$. This contradicts the assumption.

5.2.42 **Theorem:** If A is a (i, j)-rw-closed set and $A \subset B \subset \tau_j\text{-cl}(A)$, then B is (i, j)-rw-closed.

Proof: Let G be a τ_i-regular semiopen set such that $B \subset G$. As A is a (i, j)-rw-closed set and $A \subset G$, we have $\tau_j\text{-cl}(A) \subset G$. Now $B \subset \tau_j\text{-cl}(A)$ which implies, $\tau_j\text{-cl}(B) \subset \tau_j\text{-cl}(\tau_j\text{-cl}(A)) = \tau_j\text{-cl}(A) \subset G$. Thus $\tau_j\text{-cl}(B) \subset G$. Therefore B is a (i, j)-rw-closed set.

5.2.43 **Theorem:** Let $A \subset Y \subset X$ and suppose that A is (i, j)-rw-closed in (X, τ_i, τ_2). Then A is (i, j)-rw-closed relative to Y provided Y is a τ_i-regular open set.

Proof: Let $\tau_{i,Y}$ be the restriction of τ_i to Y. Let G be a $\tau_{i,Y}$-regular semiopen set such that $A \subset G$. Since $A \subset Y \subset X$ and Y is τ_i-regular open, by the Lemma 2.2.34, G is τ_i-regular semiopen. Since A is (i, j)-rw-closed, $\tau_j\text{-cl}(A) \subset G$. That is $Y \cap \tau_j\text{-cl}(A) \subset Y \cap G = G$. Also $Y \cap \tau_j\text{-cl}(A) = \tau_{i,Y}\text{-cl}(A)$. Thus $\tau_{i,Y}\text{-cl}(A) \subset G$. Hence A is (i, j)-rw-closed relative to Y.

5.2.44 **Theorem:** In a bitopological space (X, τ_i, τ_2), if $\text{RSO}(X, \tau_i) = \{X, \emptyset\}$, then every subset of (X, τ_i, τ_2) is (i, j)-rw-closed.

Proof: Let $\text{RSO}(X, \tau_2) = \{X, \emptyset\}$ in a bitopological space (X, τ_i, τ_2). Let A be any subset of X. To prove that A is an (i, j)-rw-closed. Suppose $A = \emptyset$,
then A is (i, j)-rw-closed. Suppose A ≠ \emptyset, then X is the only \tau_i-regular semiopen set and \tau_i-cl(A) \subseteq X. Hence A is a (i, j)-rw-closed set.

The converse of the above theorem need not be true in general as seen from the following example.

5.2.45 Example: Let X= \{a, b, c\}, \tau_1= \{X, \emptyset, \{a\}, \{b, c\}\} and \tau_2=\{ X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} Then every subset of X is a (1, 2)-rw-closed set but RSO(X, \tau_1) = \{X, \emptyset, \{a\}, \{b, c\}\}.

5.2.46 Theorem: If A is \tau_i-regular open and (i, j)-rg-closed, then A is (i, j)-rw-closed.

Proof: Let G be a \tau_i-regular semiopen set such that A \subseteq G. Now A \subseteq A, A is \tau_i-regular open and (i, j)-rg-closed, we have \tau_i-cl(A) \subseteq A. That is \tau_i-cl(A) \subseteq G. Therefore A is (i, j)-rw-closed.

5.2.47 Theorem: If A is \tau_i-open and (i, j)-g-closed, then A is (i, j)-rw-closed.

Proof: Let G be a \tau_i-regular semiopen set such that A \subseteq G. Now A \subseteq A, A is \tau_i-open and (i, j)-g-closed, we have \tau_i-cl(A) \subseteq A. That is \tau_i-cl(A) \subseteq G. Therefore A is (i, j)-rw-closed.

5.2.48 Theorem: Suppose that B \subseteq A \subseteq X, B is a (i, j)-rw-closed set relative to A and that A is both \tau_i-clopen and \tau_j-closed. Then B is (i, j)-rw-closed set in (X, \tau_1, \tau_2).

Proof: Let \tau_{i,A}-be the restriction of \tau_i to A. Let B \subseteq G and G be \tau_i-regular semiopen. But it is given that B \subseteq A \subseteq X. Therefore B \subseteq G and B \subseteq A, which implies B \subseteq A \cap G. Now we show that A \cap G is \tau_{i,A-} regular semiopen. Since A is \tau_i-open and G is \tau_i-semiopen, A \cap G is \tau_i-semiopen. Since A is \tau_i-closed and G is \tau_i-semi-closed, A \cap G is \tau_i-semi-closed.
Thus $A \cap G$ is both τ_j-semiopen and τ_j-semi-closed and hence $A \cap G$ is τ_j-regular semiopen. Since $A \cap G \subseteq A \subseteq X$, by Lemma 2.2.34, $A \cap G$ is $\tau_{i,A}$-regular semiopen.

Since B is a (i, j)-rw-closed set relative to A, $\tau_{j,A} \text{-cl}(B) \subseteq A \cap G$—(i). But $\tau_{j,A} \text{-cl}(B) = A \cap \tau_j \text{-cl}(B)$—(ii). From (i) and (ii), it follows that $A \cap \tau_j \text{-cl}(B) \subseteq A \cap G$. Consequently $A \cap \tau_j \text{-cl}(B) \subseteq G$. Since A is τ_j-closed, $\tau_j \text{-cl}(A) = A$ and $\tau_j \text{-cl}(B) \subseteq \tau_j \text{-cl}(A) = A$, we have $A \cap \tau_j \text{-cl}(B) = \tau_j \text{-cl}(B)$. Thus $\tau_j \text{-cl}(B) \subseteq G$ and hence B is (i, j)-rw-closed set in (X, τ_1, τ_2).

5.3 (τ_i, τ_j)-rw-open sets and their basic properties.

In this section, we introduce (i, j)-rw-open sets in bitopological spaces and study some of their properties.

5.3.1 Definition: Let $i, j \in \{1, 2\}$ be fixed integers. In a bitopological space (X, τ_1, τ_2), a subset $A \subseteq X$ is said to be (τ_i, τ_j)-rw-open (briefly, (i, j)-rw-open) if A^c is (i, j)-rw-closed.

5.3.2 Theorem: In a bitopological space (X, τ_1, τ_2), we have the following

(i) Every (i, j)-w-open set is (i, j)-rw-open but not conversely.

(ii) Every (i, j)-rw-open set is (i, j)-rg-open but not conversely.

(iii) Every τ_j-open set is (i, j)-rw-open but not conversely.

(iv) Every (i, j)-rw-open set is (i, j)-gpr-open but not conversely.

Proof: The proof follows from the Theorems 5.2.3, 5.2.5, 5.2.7, and 5.2.18.

5.3.3 Theorem: If A and B are (i, j)-rw-open sets, then $A \cap B$ is (i, j)-rw-open.
Proof: The proof follows from the Theorem 5.2.29.

5.3.4 Remark: The union of two (i, j)-rw-open sets is generally not an (i, j)-rw-open set as seen from the following example.

5.3.5 Example Let $X=\{a, b, c, d\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Then the subsets $\{c, d\}$ and $\{b\}$ are (1, 2)-rw-open sets, but $\{c, d\} \cup \{b\} = \{b, c, d\}$ is not (1, 2)-rw-open set in the bitopological space (X, τ_1, τ_2).

5.3.6 Theorem: A subset A of (X, τ_1, τ_2) is (i, j)-rw-open if and only if $F \subseteq \tau_j$-int(A), whenever F is τ-regular semiopen and $F \subseteq A$.

Proof: Suppose that $F \subseteq \tau_j$-int(A) whenever $F \subseteq A$ and F is τ-regular semiopen. To prove that A is (i, j)-rw-open. Let G be τ-regular semiopen and $A^c \subseteq G$. Then $G^c \subseteq A$ and G^c is τ-regular semiopen, by Lemma 1.2.5. By hypothesis, $G^c \subseteq \tau_j$-int(A). That is $(\tau_j$-int$(A))^c \subseteq G$, since τ_j-cl$(A^c) = (\tau_j$-int$(A))^c$. Thus A^c is (i, j)-rw-closed. That is A is (i, j)-rw-open.

Conversely, suppose that A is (i, j)-rw-open, $F \subseteq A$ and F is τ-regular semiopen. To prove that A is (i, j)-rw-open. Let G be τ-regular semiopen and $A^c \subseteq G$. Then $G^c \subseteq (\tau_j$-int$(A))^c = (\tau_j$-int$(A))^c$. Since A^c is (i, j)-rw-closed, we have τ_j-cl$(A^c) \subseteq F^c$ and so $F \subseteq \tau_j$-int(A), since τ_j-cl$(A^c) = (\tau_j$-int$(A))^c$.

5.3.7 Theorem: Let A and G be two subsets of a bitopological space (X, τ_1, τ_2). If the set A is (i, j)-rw-open, then $G=X$, whenever G is τ-regular semiopen and τ_j-int$(A) \cup A^c \subseteq G$.

Proof: Let A be (i, j)-rw-open, G be the τ-regular semiopen and τ_j-int$(A) \cup A^c \subseteq G$. Then $G^c \subseteq (\tau_j$-int$(A) \cup A^c)^c = (\tau_j$-int$(A))^c \setminus A^c$. Since A^c is (i, j)-rw-closed and G^c is τ-regular semiopen, by Theorem 5.2.36, it follows that $G^c=\phi$, Therefore $G=X$.

- 145 -
The converse of the above theorem need not be true as seen from the following example.

5.3.8 Example: Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{b\}, \{c\}, \{b, c\}, \{a, c\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\} \). If \(A = \{a, c\} \), then the only \(\tau_1 \)-regular semiopen set containing \(\tau_2 \text{-int}(A) \cup A^c \) is \(X \). But \(A \) is not \((1, 2)\)-rw-open set in \((X, \tau_1, \tau_2)\).

5.3.9 Theorem: If a subset \(A \) of \((X, \tau_1, \tau_2)\) is \((i, j)\)-rw-closed, then \(\tau_j \text{-cl}(A) - A \) is \((i, j)\)-rw-open.

Proof: Let \(A \) be a \((i, j)\)-rw-closed subset in \((X, \tau_1, \tau_2)\). Let \(F \) be a \(\tau_j \)-regular semiopen set such that \(F \subset \tau_j \text{-cl}(A) - A \). By Theorem 5.2.36, \(F = \phi \). Therefore \(F \subset \tau_j \text{-int}(\tau_j \text{-cl}(A) - A) \) and by Theorem 5.3.6, \(\tau_j \text{-cl}(A) - A \) is \((i, j)\)-rw-open.

The converse of the above theorem need not be true as seen from the following example.

5.3.10 Example: For the subset \(A = \{b\} \) in \(X = \{a, b, c\} \) of Example 5.3.8, \(\tau_2 \text{-cl}(A) - A = \{b, c\} - \{b\} = \{c\} \) is \((1, 2)\)-rw-open but \(A = \{b\} \), is not \((1, 2)\)-rw-closed.

5.3.11 Theorem: If \(\tau_j \text{-int}(A) \subset B \subset A \) and \(A \) is \((i, j)\)-rw-open in \((X, \tau_1, \tau_2)\), then \(B \) is \((i, j)\)-rw-open.

Proof: Let \(F \) be \(\tau_j \)-regular semiopen such that \(F \subset B \). Now \(F \subset B \subset A \). That is \(F \subset A \). Since \(F \) is \((i, j)\)-rw-open, by Theorem 5.3.6, \(F \subset \tau_j \text{-int}(A) \). By hypothesis \(\tau_j \text{-int}(A) \subset B \). Therefore \(\tau_j \text{-int} (\tau_j \text{-int}(A)) \subset \tau_j \text{-int}(B) \). That is \(\tau_j \text{-int}(A) \subset \tau_j \text{-int}(B) \) and hence \(F \subset \tau_j \text{-int}(B) \). Again by Theorem 5.3.6, \(B \) is a \((i, j)\)-rw-open set in \((X, \tau_1, \tau_2)\).

5.3.12 Corollary: Let \(A \) and \(B \) be subsets of a space \((X, \tau_1, \tau_2)\). If \(B \) is \((i, j)\)-rw-open and \(A \supset \tau_j \text{-int}(B) \), then \(A \cap B \) is \((i, j)\)-rw-open.
Proof: Let B be (i, j)-rw-open and A ⇒ xj-int(B). That is \(\tau_j\)-int(B) ⊆ A. Then \(\tau_j\)-int(B) ⊆ A ∩ B. Also \(\tau_j\)-int(B) ⊆ A ∩ B ⊆ B and B is (i, j)-rw-open. By Theorem 5.3.11, A ∩ B is also (i, j)-rw-open.

5.3.13 Theorem: Every singleton point set in a space \((X, \tau_1, \tau_2)\) is either (i, j)-rw-open or \(\tau_i\)-regular semiopen.

Proof: Let \((X, \tau_1, \tau_2)\) be a bitopological space. Let \(x \in X\). To prove \(\{x\}\) is either (i, j)-rw-open or \(\tau_i\)-regular semiopen. That is to prove \(X - \{x\}\) is either (i, j)-rw-closed or \(\tau_i\)-regular semiopen, which follows from Theorem 5.2.35.

5.4 \((\tau_i, \tau_j)\)-rw-closure in bitopological spaces.

W. Dunham [33] introduced the concept of generalized closure operator \(C^*\) and Fukutake [34] introduced and studied the concept of pairwise generalized closure operator \((\tau_i, \tau_j)\)-cl* in a bitopological spaces. Analogous to that we introduce the pairwise rw-closure operator \((i, j)\)-rw-cl in bitopological spaces and study some of their properties.

5.4.1 Definition: Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(i, j \in \{1, 2\}\) be fixed integers. For each subset \(E\) of \(X\), define \((\tau_i, \tau_j)\)-rw-cl \((E) = \bigcap\{A: E \subseteq A \in D_{rw}(i, j)\}\) (briefly: \((i, j)\)-rw-cl \((E)\)).

5.4.2 Theorem: If \(A\) and \(B\) be subsets of \((X, \tau_1, \tau_2)\). Then

(i) \((i, j)\)-rw-cl \((X) = X\) and \((i, j)\)-rw-cl \((\emptyset) = \emptyset\).

(ii) \(A \subseteq (i, j)\)-rw-cl \((A)\).

(iii) If \(B\) is any \((i, j)\)-rw-closed set containing \(A\), then \((i, j)\)-rw-cl \((A) \subseteq B\).

Proof: Follows form the Definition 5.4.1.
5.4.3 Theorem: Let A and B be subsets of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers. If $A \subseteq B$, then (i, j)-rw-cl(A) $\subseteq (i, j)$-rw-cl(B).

Proof: Let $A \subseteq B$. By Definition 5.4.1, (i, j)-rw-cl(B) $= \cap \{F: B \subseteq F \in D_{rw}(i, j)\}$
If $B \subseteq F \in D_{rw}(i, j)$, since $A \subseteq B$, $A \subseteq B \subseteq F \in D_{rw}(i, j)$, we have (i, j)-rw-cl(A) $\subseteq F$. Therefore (i, j)-rw-cl(A) $\subseteq \cap \{F: B \subseteq F \in D_{rw}(i, j)\} = (i, j)$-rw-cl($B$).
That is (i, j)-rw-cl(A) $\subseteq (i, j)$-rw-cl(B).

5.4.4 Theorem: Let A be a subset of (X, τ_1, τ_2). If $\tau_1 \subseteq \tau_2$ and $RSO(X, \tau_1) \subseteq RSO(X, \tau_2)$, then $(1, 2)$-rw-cl(A) $\subseteq (2, 1)$-rw-cl(A).

Proof: By definition 5.4.1, $(1, 2)$-rw-cl(A) $= \cap \{F: A \subseteq F \in D_{rw}(1, 2)\}$. Since $\tau_1 \subseteq \tau_2$, by Theorem 5.2.34, $D_{rw}(2, 1) \subseteq D_{rw}(1, 2)$. Therefore $\cap \{F: A \subseteq F \in D_{rw}(1, 2)\} \subseteq \cap \{F: A \subseteq F \in D_{rw}(2, 1)\}$. That is $(1, 2)$-rw-cl(A) $\subseteq \cap \{F: A \subseteq F \in D_{rw}(2, 1)\} = (2, 1)$-rw-cl($A$). Hence $(1, 2)$-rw-cl(A) $\subseteq (2, 1)$-rw-cl(A).

5.4.5 Theorem: Let A be a subset of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers, then $A \subseteq \tau_j$-cl(A) $\subseteq \tau_j$-cl(A).

Proof: By Definition 5.4.1, it follows that $A \subseteq (i, j)$-rw-cl(A). Now to prove that (i, j)-rw-cl(A) $\subseteq \tau_j$-cl(A). By definition of closure, τ_j-cl(A) $= \cap \{F \subseteq X: A \subseteq F$ and F is τ_j-closed}. If $A \subseteq F$ and F is τ_j-closed, then F is (i, j)-rw-closed, as every τ_j-closed set is is (i, j)-rw-closed. Therefore (i, j)-rw-cl(A) $\subseteq \cap \{F \subseteq X: A \subseteq F$ and F is τ_j-closed} = τ_j-cl(A). Hence (i, j)-rw-cl(A) $\subseteq \tau_j$-cl(A).

5.4.6 Remark: Containment relation in the above theorem may be proper as seen from the following example.

5.4.7 Example: Let X={a, b, c, d}, τ_1={$X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}$} and τ_2={$X, \phi, \{a, b\}, \{c, d\}$}. Then τ_2-closed sets are $X, \phi, \{a, b\}, \{c, d\}$ and $(1, 2)$-rw-closed sets are $X, \phi, \{a, b\}, \{c, d\}$ and $\{a, b, c\}$ and $\{a, b, d\}$.
Take $A = \{b, c\}$. Then $\tau_2\text{-cl}(A) = X$ and $(1, 2)\text{-rw-cl}(A) = \{a, b, c\}$. Now $A \subseteq (1, 2)\text{-rw-cl}(A)$, but $A \neq (1, 2)\text{-rw-cl}(A)$. Also $(1, 2)\text{-rw-cl}(A) \subseteq \tau_2\text{-cl}(A)$, but $(i, j)\text{-rw-cl}(A) \neq \tau_j\text{-cl}(A)$.

5.4.8 Theorem: Let A be a subset of (X, τ_1, τ_2) and $i, j \in \{1, 2\}$ be fixed integers. If A is (i, j)-rw-closed, then (i, j)-rw-cl$(A) = A$.

Proof: Let A be a (i, j)-rw-closed subset of (X, τ_1, τ_2). We know that $A \subseteq (i, j)$-rw-cl(A). Also $A \subseteq A$ and A is (i, j)-rw-closed. By the Theorem 5.4.2 (iii), (i, j)-rw-cl$(A) \subseteq A$. Hence (i, j)-rw-cl$(A) = A$.

5.4.9 Remark: The converse of the above Theorem 5.4.8 need not be true as seen from the following example.

5.4.10 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$. Then $(1, 2)$-rw-closed sets are $X, \phi, \{a\}, \{a, b\}, \{b, c\}$. Take $A = \{b\}$. Now $(1, 2)$-rw-cl$(A) = X \cap \{a, b\} \cap \{b, c\} = \{b\}$, but $\{b\}$ is not a $(1, 2)$-rw-closed set.

5.4.11 Theorem: The operator (i, j)-rw-closure in Definition 5.4.1, is the Kuratowski closure operator on X.

Proof: (i) (i, j)-rw-cl$(\phi) = \phi$, by Theorem 5.4.2 (i).

(ii) $E \subset (i, j)$-rw-cl(E) for any subset E of X by Theorem 5.4.2 (ii).

(iii) Suppose E and F are two subsets of (X, τ_1, τ_2). It follows from Theorem 5.4.3, that (i, j)-rw-cl$(E) \subset (i, j)$-rw-cl$(E \cup F)$ and that (i, j)-rw-cl$(F) \subset (i, j)$-rw-cl$(E \cup F)$. Hence we have (i, j)-rw-cl$(E) \cup (i, j)$-rw-cl$(F) \subset (i, j)$-rw-cl$(E \cup F)$.

Now if x does not belong to (i, j)-rw-cl$(E) \cup (i, j)$-rw-cl(F), then $x \notin (i, j)$-rw-cl(E) and $x \notin (i, j)$-rw-cl(F), it follows that there exist $A, B \in D_{rw}(i, j)$ such that $E \subseteq A$, $x \notin A$ and $F \subseteq B$, $x \notin B$. Hence $E \cup F \subseteq A \cup B$,

- 149 -
x \not\in A \cup B. Since A \cup B is (i, j)-rw-closed, by Theorem 5.2.29, x does not belong to (i, j)-rw-cl(E \cup F). Then we have (i, j)-rw-cl(E \cup F) \subset (i, j)-rw-cl(E) \cup (i, j)-rw-cl(F). From the above discussion we have (i, j)-rw-cl(E \cup F) = (i, j)-rw-cl(E) \cup (i, j)-rw-cl(F).

(iv) Let E be any subset of (X, \tau_1, \tau_2). By the definition of (i, j)-rw-closure, (i, j)-rw-cl (E) = \cap \{A \subset X : E \subset A \in D_{rw}(i, j)\}. If E \subset A \in D_{rw}(i, j), then (i, j)-rw-cl (E) \subset A. Since A is a (i, j)-rw-closed set containing (i, j)-rw-cl (E), by Theorem 5.4.2 (iii), (i, j)-rw-cl\{(i, j)-rw-cl(E)\} \subset A, Hence (i, j)-rw-cl\{(i, j)-rw-cl(E)\} \subset \cap \{A \subset X : E \subset A \in D_{rw}(i, j)\} = (i, j)-rw-cl(E).

Conversely (i, j)-rw-cl (E) \subset (i, j)-rw-cl((i, j)-rw-cl(E)) is true by Theorem 5.4.2 (iii). Then we have (i, j)-rw-cl(E) = (i, j)-rw-cl((i, j)-rw-cl(E)). Hence (i, j)-rw-closure is a Kuratowski closure operator on X.

From the above Theorem 5.4.11, (i, j)-rw-closure defines the new topology on X.

5.4.12 Definition: Let i, j \in \{1, 2\} be two fixed integers. Let \tau_{rw}(i, j) be the topology on X generated by (i, j)-rw-closure in the usual manner. That is \tau_{rw}(i, j) = \{E \subset X : (i, j)-rw-cl(E^c) = E^c\}.

5.4.13 Theorem: Let (X, \tau_1, \tau_2) be a bitopological space and i, j \in \{1, 2\} be two fixed integers, then \tau_j \subset \tau_{rw}(i, j).

Proof: Let G \in \tau_j. It follows that G^c is \tau_j-closed. By Theorem 5.2.7, G^c is (i, j)-rw-closed. Therefore (i, j)-rw-cl (G^c) = G^c, by Theorem 5.4.8. That is G \in \tau_{rw}(i, j) and hence \tau_j \subset \tau_{rw}(i, j).

5.4.14 Remark: Containment relation in the above Theorem 5.4.13 may be proper as seen from the following example.

5.4.15 Example: Let X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} and \tau_2 = \{X, \phi, \{a\}, \{b, c\}\}. Then (1, 2)-rw-closed sets are X, \phi, \{a\}, \{a, b\}, \{b, c\} and
\[\tau_{rw}(1, 2) = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}, \{b, c\}\}. \] Clearly \(\tau_2 \subseteq \tau_{rw}(1, 2) \), but \(\tau_2 \neq \tau_{rw}(1, 2) \).

5.4.16 Theorem: Let \((X, \tau_1, \tau_2)\) be a bitopological space and \(i, j \in \{1, 2\}\) be two fixed integers. If a subset \(E\) of \(X\) is \((i, j)\)-rw-closed, then \(E\) is \(\tau_{rw}(i, j)\)-closed.

Proof: Let a subset \(E\) of \(X\) be \((i, j)\)-rw-closed. By Theorem 5.4.8, \((i, j)\)-rw-cl \((E) = E\). That is \((i, j)\)-rw-cl \((E^c)^c\) = \((E^c)^c\). It follows that \(E^c \in \tau_{rw}(i, j)\). Therefore \(E\) is \(\tau_{rw}(i, j)\)-closed.

5.4.17 Remark: The converse of the above theorem need not be true as seen from the following example.

5.4.18 Example: For \((X, \tau_1, \tau_2)\) of Example 5.4.15, the subset \(A = \{b\}\) is \(\tau_{rw}(1, 2)\)-closed, but not \((1, 2)\)-rw-closed.

5.4.19 Corollary: For any point \(x\) of \((X, \tau_1, \tau_2)\), \(\{x\}\) is \(\tau_i\)-regular semiopen or \(\tau_{rw}(i, j)\)-open.

Proof: Let \(x\) be any point of \((X, \tau_1, \tau_2)\). By Theorem 5.2.35, \(\{x\}\) is \(\tau_i\)-regular semiopen or \(\{x\}^c\) is \((i, j)\)-rw-closed. That is \(\{x\}^c\) is \(\tau_{rw}(i, j)\)-closed, by above Theorem 5.4.16. Therefore \(\{x\}\) is \(\tau_i\)-regular semiopen or \(\tau_{rw}(i, j)\)-open.

5.4.20 Theorem: If \(\tau_1 \subset \tau_2\) and \(\text{RSO}(X, \tau_1) \subset \text{RSO}(X, \tau_2)\) in \((X, \tau_1, \tau_2)\), then \(\tau_{rw}(2, 1) \subset \tau_{rw}(1, 2)\).

Proof: Let \(G \in \tau_{rw}(2, 1)\). Then \((2, 1)\)-rw-cl \((G^c) = G^c\). To prove that \(G \in \tau_{rw}(1, 2)\). That is to prove \((1, 2)\)-rw-cl \((G^c) = G^c\). Now \((1, 2)\)-rw-cl \((G^c) = \cap \{F \subset X : \text{G}^c \subset F \in D_{rw}(1, 2)\}\). Since \(\tau_1 \subset \tau_2\) and \(\text{RSO}(X, \tau_1) \subset \text{RSO}(X, \tau_2)\), by Theorem 5.2.34, \(D_{rw}(2, 1) \subset D_{rw}(1, 2)\). Thus \(\cap \{F \subset X : \text{G}^c \subset F \in D_{rw}(1, 2)\}\)
\(\{ F \subseteq X : G^c \subseteq \text{Fe } D_{rw}(2, 1) \} \). That is \((1, 2)\)-rw-\(\text{cl}(G^c) \subseteq (2, 1)\)-rw-\(\text{cl}(G^c) = G^c \), and so \((1, 2)\)-rw-\(\text{cl}(G^c) \subseteq G^c \).

Conversely \(G^c \subseteq (1, 2)\)-rw-\(\text{cl}(G^c) \) is true by the Theorem 5.4.2 (ii).

Then we have \((1, 2)\)-rw-\(\text{cl}(G^c) = G^c \). That is \(G \in \tau_{rw}(1, 2) \) and hence \(\tau_{rw}(2, 1) \subseteq \tau_{rw}(1, 2) \).

5.5 \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous maps and \(rw\)-bi-continuous maps.

In this section a new class of maps called \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous maps in bitopological spaces are introduced and investigated. During this process, some of their properties are obtained. It is found that every \(C(i, j)\)-\(\sigma_k\)-continuous map is \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous which implies \(D_r(i, j)\)-\(\sigma_k\)-continuous. Also, we introduce the concept of \(rw\)-bi-continuity and \(rw\)-s-bi-continuity in bitopological spaces and study some of their properties.

5.5.1 Definition: A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is called \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous if the inverse image of every \(\sigma_k\)-closed set is an \((i, j)\)-rw-closed set in \((X, \tau_1, \tau_2)\).

5.5.2 Remark: If \(\tau_1 = \tau_2 = \tau \) and \(\sigma_1 = \sigma_2 = \sigma \) in Definition 5.5.1, then the \(D_{rw}(i, j)\)-\(\sigma_k\)-continuity of maps coincides with \(rw\)-continuity of maps in topological spaces.

5.5.3 Theorem: If a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(\tau_j\)-\(\sigma_k\)-continuous, then it is a \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous.

Proof: Let \(V \) be a \(\sigma_k\)-closed set. Since \(f \) is \(\tau_j\)-\(\sigma_k\)-continuous, \(f^{-1}(V) \) is \(\tau_j\)-closed. By Theorem 5.2.7, \(f^{-1}(V) \) is \((i, j)\)-rw-closed in \((X, \tau_1, \tau_2)\). Therefore \(f \) is \(D_{rw}(i, j)\)-\(\sigma_k\)-continuous.
The converse of this Theorem need not be true in general as seen from the following example.

5.5.4 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{b\}\}$ and $\tau_2 = \{X, \phi, \{b, c\}\}$, $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}\}$ and $\sigma_2 = \{Y, \phi, \{q\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = p$, $f(b) = f(c) = q$. Then f is $D_{rw}(2, 1) - \sigma_2$-continuous but it is not $\tau_1 - \sigma_2$-continuous, since for the σ_2-closed set $\{p\}$, $f^{-1}(\{p\}) = \{a\}$ which is not τ_1-closed.

5.5.5 Theorem: If a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $C(i, j) - \sigma_k$-continuous, then it is $D_{rw}(i, j) - \sigma_k$-continuous.

Proof: Let V be a σ_k-closed set. Since f is $C(i, j) - \sigma_k$-continuous, $f^{-1}(V)$ is (i, j)-w-closed. By Theorem 5.2.3, $f^{-1}(V)$ is (i, j)-rw-closed in (X, τ_1, τ_2). Therefore f is $D_{rw}(i, j) - \sigma_k$-continuous.

The converse of this Theorem need not be true in general as seen from the following example.

5.5.6 Example: Let $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a, b\}\}$ and $Y = \{p, q\}$, $\sigma_1 = \{Y, \phi, \{p\}\}$ and $\sigma_2 = \{Y, \phi, \{p, \{q\}\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a) = f(b) = q$ and $f(c) = p$. Then f is $D_{rw}(1, 2) - \sigma_1$-continuous but it is not $C(1, 2) - \sigma_1$-continuous, since for the σ_1-closed set $\{q\}$, $f^{-1}(\{q\}) = \{a, b\}$ which is not $(1, 2)$-w-closed set.

5.5.7 Theorem: If a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D_{rw}(i, j) - \sigma_k$-continuous, then it is $D_l(i, j) - \sigma_k$-continuous.

Proof: Let V be a σ_k-closed set. Since f is $D_{rw}(i, j) - \sigma_k$-continuous, $f^{-1}(V)$ is (i, j)-rw-closed. By Theorem 5.2.5, $f^{-1}(V)$ is (i, j)-rg-closed in (X, τ_1, τ_2). Therefore f is $D_l(i, j) - \sigma_k$-continuous.
The converse of this Theorem need not be true in general as seen from the following example.

5.5.8 Example: Let $X=\{a, b, c, d\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$, $\tau_2=\{X, \phi, \{a, b\}, \{c, d\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi, \{p\}\}$ and $\sigma_2=\{Y, \phi\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a)=f(c)=p$ and $f(b)=f(d)=q$. Then f is $D_r(1, 2)-\sigma_1$-continuous but it is not $D_{rw}(1, 2)-\sigma_1$-continuous, since for the σ_1-closed set $\{p\}$, $f^{-1}(\{p\})=\{a, c\}$ which is not a $(1, 2)$-rw-closed set.

5.5.9 Theorem: If a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $D_r(i, j)-\sigma_k$-continuous, then it is $\zeta(i, j)-\sigma_k$-continuous.

Proof: Let V be a σ_k-closed set. Since f is $D_r(i, j)-\sigma_k$-continuous, $f^{-1}(V)$ is (i, j)-rw-closed. By Theorem 5.2.18, $f^{-1}(V)$ is (i, j)-gpr-closed in (X, τ_1, τ_2). Therefore f is $\zeta(i, j)-\sigma_k$-continuous.

The converse of this Theorem need not be true in general as seen from the following example.

5.5.10 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a, b\}, \{c\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi\}$ and $\sigma_2=\{Y, \phi, \{p\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a)=f(b)=p$ and $f(c)=q$. Then this function f is $\zeta(1, 2)-\sigma_2$-continuous but it is not $D_{rw}(1, 2)-\sigma_2$-continuous, since for the σ_2-closed set $\{q\}$, $f^{-1}(\{q\})=\{c\}$ which is not $(1, 2)$-rw-closed in (X, τ_1, τ_2).

5.5.11 Remark: $D_{rw}(i, j)-\sigma_k$-continuous maps and $D(i, j)-\sigma_k$-continuous maps are independent.

5.5.12 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi\}$ and $\sigma_2=\{Y, \phi, \{q\}\}$. Define a map $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ by $f(a)=f(b)=p$ and $f(c)=q$. Then this function
f is $D_{rw}(1, 2)$-σ_2-continuous but it is not $D(1, 2)$-σ_2-continuous, since for the σ_2-closed set \{p\}, $f^{-1}(\{p\})=\{a, b\}$ which is not $(1, 2)$-g-closed in (X, τ_1, τ_2).

5.5.13 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b, c\}\}$ and $Y=\{p, q\}$, $\sigma_1=P(Y)$ and $\sigma_2=\{Y, \phi, \{q\}\}$. Define a map $f:(X, \tau_1, \tau_2)\to(Y, \sigma_1, \sigma_2)$ by $f(a)=f(c)=p$ and $f(b)=q$. Then this function f is $D(1, 2)$-σ_2-continuous but it is not $D_{rw}(1, 2)$-σ_2-continuous, since for the σ_2-closed set \{p\}, $f^{-1}(\{p\})=\{a, c\}$ which is not $(1, 2)$-rw-closed in (X, τ_1, τ_2).

5.5.14 Remark: $D_{rw}(i, j)$-σ_k-continuous maps and $W(i, j)$-σ_k-continuous maps are independent.

5.5.15 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}\}$ and $Y=\{p, q\}$, $\sigma_1=P(Y)$ and $\sigma_2=\{Y, \phi, \{q\}\}$. Define a map $f:(X, \tau_1, \tau_2)\to(Y, \sigma_1, \sigma_2)$ by $f(a)=f(c)=p$ and $f(b)=q$. Then this function f is $D_{rw}(1, 2)$-σ_2-continuous but it is not $W(1, 2)$-σ_2-continuous, since for the σ_2-closed set \{p\}, $f^{-1}(\{p\})=\{a, c\}$ which is not $(1, 2)$-wg-closed in (X, τ_1, τ_2).

5.5.16 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{c\}, \{b, c\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi\}$ and $\sigma_2=\{Y, \phi, \{p\}\}$. Define a map $f:(X, \tau_1, \tau_2)\to(Y, \sigma_1, \sigma_2)$ by $f(a)=p$ and $f(b)=f(c)=q$. Then this function f is $W(1, 2)$-σ_2-continuous but it is not $D_{rw}(1, 2)$-σ_2-continuous, since for the σ_2-closed set \{q\}, $f^{-1}(\{q\})=\{b, c\}$ which is not $(1, 2)$-rw-closed in (X, τ_1, τ_2).

- 155 -
5.5.17 **Remark:** From the above discussions and known results we have the following implications. From

\[A \rightarrow B \] means A implies B, but not conversely and from

\[A \leftrightarrow B \] means A and B are independent of each other

\[
\begin{align*}
C(i,j)-\sigma_k\text{-continuity} \quad & \quad \zeta(i,j)-\sigma_k\text{-continuity} \\
\tau_j-\sigma_k\text{-continuity} \quad & \quad D_{rw}(i,j)-\sigma_k\text{-continuity} \\
W(i,j)-\sigma_k\text{-continuity} \quad & \quad D(i,j)-\sigma_k\text{-continuity}
\end{align*}
\]

Figure-5.2

5.5.18 **Theorem:** The following statements are equivalent

(i) A map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(D_{rw}(i,j)-\sigma_k\text{-continuous} \).

(ii) The inverse image of every \(\sigma_k\text{-open} \) set in \(Y \) is \((i,j)-rw\text{-open} \) in \(X \).

Proof: (i) \(\Rightarrow \) (ii) Let \(G \) be a \(\sigma_k\text{-open} \) set in \(Y \). Then \(G^C \) is \(\sigma_k\text{-closed} \) set in \(Y \). Since \(f \) is \(D_{rw}(i,j)-\sigma_k\text{-continuous} \), \(f^{-1}(G^C) \) is \((i,j)-rw\text{-closed} \) in \(X \). That is \(f^{-1}(G^C) = (f^{-1}(G))^C \) and so \(f^{-1}(G) \) is \((i,j)-rw\text{-open} \) in \((X, \tau_1, \tau_2) \).

(ii) \(\Rightarrow \) (i) Let \(F \) be a \(\sigma_k\text{-closed} \) set in \(Y \). Then \(F^C \) is \(\sigma_k\text{-open} \) set in \(Y \). By hypothesis, \(f^{-1}(F^C) \) is \((i,j)-rw\text{-open} \) in \(X \). That is \(f^{-1}(F^C) = (f^{-1}(F))^C \) and so \(f^{-1}(F) \) is \((i,j)-rw\text{-closed} \) in \((X, \tau_1, \tau_2) \). Therefore \(f \) is \(D_{rw}(i,j)-\sigma_k\text{-continuous} \).

5.5.19 **Theorem:** If a map \(f : (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2) \) is \(D_{rw}(i,j)-\sigma_k\text{-continuous} \), then \(f((i,j)-rw\text{-cl}(A)) \subset \sigma_k\text{-cl}(f(A)) \) holds for every subset \(A \) of \(X \).

Proof: Let \(A \) be any subset of \(X \). Then \(f(A) \subset \sigma_k\text{-cl}(f(A)) \) and \(\sigma_k\text{-cl}(f(A)) \) is \(\sigma_k\text{-closed} \) set in \(Y \). Also \(f^{-1}(f(A)) \subset f^{-1}(\sigma_k\text{-cl}(f(A))) \). That is
Since f is $D_{rw}(i, j)-\sigma_k$-continuous, $f^{-1}(\sigma_k-cl(f(A)))$ is a (i, j)-rw-closed set in (X, τ_1, τ_2). By Theorem 5.4.2 (iii), (i, j)-rw-cl$(A) \subset f^{-1}(\sigma_k-cl(f(A)))$. Therefore $f((i, j)$-rw-cl$(A)) \subset f_{\sigma_k}(\sigma_k-cl(f(A))) \subset \sigma_k-cl(f(A))$. Hence $f((i, j)$-rw-cl$(A)) \subset \sigma_k-cl(f(A))$ for every subset A of (X, τ_1, τ_2).

5.5.20 Remark: Converse of the Theorem 5.5.19 is not true in general as seen from the following example.

5.5.21 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b, c\}\}$ and $Y=\{p, q\}$, $\sigma_1=\mathcal{P}(Y)$ and $\sigma_2=\{Y, \phi, \{p\}\}$. Then $D_{rw}(1, 2)=\{X, \phi, \{a\}, \{a, b\}, \{b, c\}\}$. Define a map $f:(X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)$ by $f(a)=f(c)=p$ and $f(b)=q$. Then $f((1, 2)$-rw-cl$(A)) \subset \sigma_2-cl(f(A))$ for every subset A of X. But f is not $D_{rw}(1, 2)$-σ_2-continuous, since for the σ_2-closed set $\{q\}$, $f^{-1}([q])=[b]$ which is not a $(1, 2)$-rw-closed set in (X, τ_1, τ_2).

5.5.22 Theorem: If a map $f:(X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)$ is $D_{rw}(i, j)-\sigma_k$-continuous and $g: (Y, \sigma_1, \sigma_2)\rightarrow(Z, \eta_1, \eta_2)$ is σ_k-\eta_1-continuous, then gof is $D_{rw}(i, j)-\eta_1$-continuous.

Proof: Let F be η_1-closed set in (Z, η_1, η_2). Since g is σ_k-\eta_1-continuous, $g^{-1}(F)$ is a σ_k-closed set in (Y, σ_1, σ_2). Since f is $D_{rw}(i, j)-\sigma_k$-continuous, $f^{-1}(g^{-1}(F))=(gof)^{-1}(F)$ is a (i, j)-rw-closed set in (X, τ_1, τ_2) and hence gof is $D_{rw}(i, j)-\eta_1$-continuous.

5.5.23 Definition: (i) A map $f:(X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)$ is called rw-bi-continuous if f is $D_{rw}(1, 2)-\sigma_2$-continuous and is $D_{rw}(2, 1)-\sigma_1$-continuous.

(ii) A map $f:(X, \tau_1, \tau_2)\rightarrow(Y, \sigma_1, \sigma_2)$ is called rw-strongly-bi-continuous (briefly rw-s-bi-continuous) if f is rw-continuous, $D_{rw}(2, 1)-\sigma_2$-continuous and $D_{rw}(1, 2)-\sigma_1$-continuous.
5.5.24 Theorem: Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a map.

(i) If \(f \) is bi-continuous then \(f \) is rw-bi-continuous.

(ii) If \(f \) is s-bi-continuous then \(f \) is rw-s-bi-continuous.

Proof: (i) Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a bi-continuous map. Then \(f \) is \(\tau_1-\sigma_1 \)-continuous and \(\tau_2-\sigma_2 \)-continuous and so by Theorem 5.5.3, \(f \) is \(D_{rw}(1, 2)-\sigma_2 \)-continuous and \(D_{rw}(2, 1)-\sigma_1 \)-continuous. Thus \(f \) is rw-bi-continuous.

(ii) Similar to (i), using Theorem 5.5.3.

The converse of this Theorem need not be true in general as seen from the following example.

5.5.25 Example: Let \(X=\{a, b, c\}, \tau_1=\{X, \phi, \{a\}\} \) and \(\tau_2=\{X, \phi, \{a, b\}\} \) and \(Y=\{p, q\}, \sigma_1=\{Y, \phi, \{p\}\} \) and \(\sigma_2=\{Y, \phi, \{p, q\}\} \). Define a map \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) by \(f(a)=p \) and \(f(b)=f(c)=q \). Then \(f \) is rw-s-bi-continuous but not s-bi-continuous. This map is also rw-bi-continuous but not bi-continuous.

5.5.26 Theorem: Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be a map.

(i) If \(f \) is w-bi-continuous then \(f \) is rw-bi-continuous.

(ii) If \(f \) is w-s-bi-continuous then \(f \) is rw-s-bi-continuous.

Proof: (i) Let \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be w-bi-continuous map. Then \(f \) is \(C(2, 1)-\sigma_1 \)-continuous and \(C(1, 2)-\sigma_2 \)-continuous and so by Theorem 5.5.5, \(f \) is \(D_{rw}(1, 2)-\sigma_2 \)-continuous and \(D_{rw}(2, 1)-\sigma_1 \)-continuous. Thus \(f \) is rw-bi-continuous.

(ii) Similar to (i), using Theorem 5.5.5.

The converse of this Theorem need not be true in general as seen from the following example.
5.5.27 Example: Let $X=\{a, b, c\}$, $\tau_1=\{X, \phi, \{a\}\}$ and $\tau_2=\{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi\}$ and $\sigma_2=\{Y, \phi, \{p\}\}$. Define a map $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a)=f(b)=q$ and $f(c)=p$. Then this function f is rw-bi-continuous but it is not w-bi-continuous, since f is not $C(2, 1)$-σ_1-continuous. This map is also rw-s-bi-continuous but not w-s-bi-continuous.

5.5.28 Theorem: Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a map.

(i) If f is rw-bi-continuous then f is rg-bi-continuous.

(ii) If f is rw-s-bi-continuous then f is rg-s-bi-continuous.

Proof: (i) Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be rw-bi-continuous map. Then f is $D_{rw}(2, 1)$-σ_1-continuous and $D_{rw}(1, 2)$-σ_2-continuous and so by Theorem 5.5.7, f is $D(1, 2)$-σ_2-continuous and $D(2, 1)$-σ_1-continuous. Therefore f is rg-bi-continuous.

(ii) Similar to (i), using Theorem 5.5.7.

The converse of this Theorem need not be true in general as seen from the following example.

5.5.29 Example: Let $X=\{a, b, c, d\}$, $\tau_1=\{X, \phi, \{a\}, \{b\}, \{a, b, c\}\}$ and $\tau_2=\{X, \phi, \{a, b\}, \{c, d\}\}$ and $Y=\{p, q\}$, $\sigma_1=\{Y, \phi\}$ and $\sigma_2=\{Y, \phi, \{p\}\}$. Define a map $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ by $f(a)=f(b)=f(d)=p$ and $f(c)=q$. Then f is rg-bi-continuous but it is not rw-bi-continuous, since f is not $D_{rw}(1, 2)$-σ_2-continuous. This map is also rg-s-bi-continuous but not rw-s-bi-continuous.
5.5.30 **Remark:** The following diagram summarizes the above discussions.

![Diagram](image)

Figure-5.3

5.5.31 **Definition:** A map \(\phi : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is called pairwise rw-irresolute if \(f^{-1}(A) \in D_{rw}(i, j) \) in \((X, \tau_1, \tau_2)\) for every \(A \in D_{rw}(k, e) \) in \((Y, \sigma_1, \sigma_2)\).

5.5.32 **Remark:** If \(\tau_1 = \tau_2 \) and \(\sigma_1 = \sigma_2 \) simultaneously, then \(f \) becomes a rw-irresolute map.

5.5.33 **Theorem:** If a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is pairwise rw-irresolute, then \(f \) is \(D_{rw}(i, j) \)-\(\sigma_c \)-continuous.

Proof: Let \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) be pairwise rw-irresolute and \(F \) be a \(\sigma_c \)-closed set in \((Y, \sigma_1, \sigma_2)\). Then \(F \) is \((k, e)\)-rw-closed set in \((Y, \sigma_1, \sigma_2)\) by Theorem 5.2.7. By hypothesis, \(f^{-1}(F) \) is a \((i, j)\)-rw-closed set in \((X, \tau_1, \tau_2)\). Therefore \(f \) is \(D_{rw}(i, j) \)-\(\sigma_c \)-continuous.

Converse of this Theorem is not true in general as seen from the following example.

5.5.34 **Example:** Let \(X = \{a, b, c\} \), \(\tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\} \) and \(\tau_2 = \{X, \phi, \{a\}, \{b, c\}\} \) and \(Y = \{p, q\} \), \(\sigma_1 = \{Y, \phi, \} \) and \(\sigma_2 = \{Y, \phi, \{q\}\} \). Define a map \(f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) by \(f(a) = f(b) = p \) and \(f(c) = q \). Then \(f \) is \((1, 2)\)-\(\sigma_2 \)-continuous but it is not pairwise rw-irresolute, since for the \((1, 2)\)-rw-closed set \(\{q\} \) in \((Y, \sigma_1, \sigma_2)\), \(f^{-1}(\{q\}) = \{c\} \) which is not a \((1, 2)\)-rw-closed set in \((X, \tau_1, \tau_2)\).
5.5.35 Theorem: The following statements are equivalent
(i) A map \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is pairwise rw-irresolute
(ii) The inverse image of every \((k, e)\)-rw-open set in \((Y, \sigma_1, \sigma_2)\) is a \((i, j)\)-rw-open set in \((X, \tau_1, \tau_2)\).

Proof: Proof is similar to that of Theorem 5.5.18.

5.5.36 Theorem: If \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) and \(g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) are two pairwise rw-irresolute maps, then their composition \(gof \) is also pairwise rw-irresolute.

Proof: Let \(A \in Drw(m, n) \) in \((Z, \eta_1, \eta_2)\). Since \(g \) is pairwise rw-irresolute, \(g^{-1}(A) \in Drw(k, e) \) in \((Y, \sigma_1, \sigma_2)\). Since \(f \) is pairwise rw-irresolute, \(f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in Drw(i, j) \). Hence \(gof \) is pairwise rw-irresolute.

5.5.37 Theorem: If a map \(f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2) \) is pairwise rw-irresolute and \(g: (Y, \sigma_1, \sigma_2) \to (Z, \eta_1, \eta_2) \) is \(Drw(k, e)\)-\(\eta_n \)-continuous, then \(gof: (X, \tau_1, \tau_2) \to (Z, \eta_1, \eta_2) \) is \(Drw(i, j)\)-\(\eta_n \)-continuous.

Proof: Let \(F \) be a \(\eta_n \)-closed set in \((Z, \eta_1, \eta_2)\). Since \(g \) is \(Drw(k, e)\)-\(\eta_n \)-continuous, \(g^{-1}(F) \in Drw(k, e) \) in \((Y, \sigma_1, \sigma_2)\). Since \(f \) is pairwise rw-irresolute, \(f^{-1}(g^{-1}(A)) = (gof)^{-1}(A) \in Drw(i, j) \) in \((X, \tau_1, \tau_2)\) and hence \(gof \) is \(Drw(i, j)\)-\(\eta_n \)-continuous.