List of figures

1.1. Schematics of Li-ion battery using LiCoO$_2$ as cathode and graphite as anode
1.2. Crystal structure of an ideal layered LiCoO$_2$ showing the lithium ions between CoO$_2$ layers of edge shared CoO$_6$ octahedra (blue).
1.3. Structure of spinel LiMn$_2$O$_4$ (space group: fd$ar{3}$m) showing the existing 3D channels for lithium diffusion.
1.4. Voltage vs. Composition plot of LiMn$_2$O$_4$ in the voltage window of 2-4.3 V.
1.5. Structure of LiFePO$_4$ that is built with FeO$_6$ octahedra linked by corners to SO$_4$ tetrahedra.
1.6. Voltage vs. composition curve of LiFePO$_4$ cycled in the voltage window of 2.75-4 V.
1.7. Structure of LiFeSO$_4$F built from FeO$_2$F$_2$ octahedra linked together by fluorine vertices forming a chain along the c-axis. The chains are bridged by SO$_4$ tetrahedra and lithium resides in the tunnels.
1.8. Charge-discharge plot of Meso Carbon Micro Beads (MCMB) vs. Li cell in the voltage window of 0-1.5 V at room temperature.
1.9. Schematic representation of possible chemical reactions for the synthesis of LiCoO$_2$ by Pechini method. Citric acid is used as the chelating agent, ethylene diamine is used to bring the basic pH and as well for esterification process.
2.1. Schematic representation of Bragg diffraction in a crystal lattice. Each lattice plane in a crystal behaves to X-rays just as does a line in diffraction grating. Nature of the X-ray diffracted beam by a crystal is determined by spacing between successive planes’d’.
2.2. Various processes associated with the interaction between electrons and material; these processes forms a basis for different analysis techniques (represented in brackets).
2.3. (a) Input profile of a galvanostatic experiment showing the applied current with time and the resultant (b) voltage vs. time plot (output profile).
2.4. (a) Input and (b) output profile of a cyclic voltammetry experiment. A constant potential at a fixed scan rate (V/sec) is applied to the cell in a triangular wave form and the current response is studied.
2.5. Schematics showing the (a) input constant power and the (b) potential evolution of the cell during constant power experiments.
2.6. General principle employing EIS analysis in a battery unit i.e perturbation of system with an alternating signal of small magnitude (I_{AC}^{in}) and study the way in which the systems follows the perturbation at study state.

2.7. Three electrode assembly used for impedance analysis. Lithium metal is used as both reference and counter electrode.

3.1. Powder X-ray diffraction patterns for LiCoO$_2$ obtained by nitrate melt decomposition at varying temperatures (a) 600 °C (b) 700 °C (c) 800 °C (d) 900 °C. The peaks marked as (#) correspond to Co$_3$O$_4$ and (*) correspond to lithium-deficient phase, Li$_{0.115}$Co$_{0.885}$O (ICSD collection code: 029229).

3.2. (a) Powder X-ray diffraction patterns for LiCoO$_2$ obtained by heating nitrates at 700 °C for varying durations. (b) & (c) Scanning Electron Micrographs for HT-LiCoO$_2$ obtained by heating corresponding metal nitrates in air at 700 °C for (a) 1 h and (b) 4 h.

3.3. Electrochemical performance of LiCoO$_2$ prepared by nitrate melts decomposition method. (a), (c), (e) are the voltage-composition curve of Li/LiCoO$_2$ cells cycled between 3.5-4.2 V with LiCoO$_2$ prepared at (a) 600 °C (c) 700 °C and (e) 800 °C. The corresponding capacity retention plots are shown in the right (b) LiCoO$_2$- 600 °C (d) LiCoO$_2$-700 °C and (f) LiCoO$_2$-800 °C.

3.4. Powder XRD Rietveld fit for LiNi$_{0.8}$Co$_{0.2}$O$_2$ derived from nitrates-melt decomposition. Inset shows the clear splitting of (006)/(102) and (108)/(110) peaks.

3.5. Scanning electron micrograph for LiNi$_{0.8}$Co$_{0.2}$O$_2$, and (b) histogram shows the particle-size distribution.

3.6. Cyclic voltammograms for LiNi$_{0.8}$Co$_{0.2}$O$_2$ vs. Li cells in the voltage range 3 V and 4.3V with a scan rate of 0.1 mV.s$^{-1}$.

3.7. (a) Voltage vs. composition plot derived from galvanostatic charge/discharge experiments on LiNi$_{0.8}$Co$_{0.2}$O$_2$/Li cell in the voltage range between 3 V and 4.3 V at 0.2C rate (b) discharge capacity as a function of cycle number.

3.8. Impedance spectra for fresh cell together with that after de-intercalation of 0.1 Li in the frequency range between 400 kHz- 2 mHz in galvanostatic mode. Inset is the magnified image of higher frequency region.

3.9. Nyquist plots for LiNi$_{0.8}$Co$_{0.2}$O$_2$/ Li half cells during de-intercalation (a-e) and intercalation (f-j) of lithium.

3.10. Equivalent circuit model used for fitting the impedance spectrum. R_e is the Ohmic resistance due to electrolyte, R_{SEI} and R_{ct} are total resistance
associated with solid electrolyte interface (SEI) and charge transfer. Q_{SEI} and Q_{ct} are constant phase elements for SEI and charge transfer. FLW is finite-length Warburg and C_{int} represents intercalative capacitance.

3.11. Plots showing variation in resistive and capacitive components for the cell during lithium de-intercalation (a-c) and intercalation (d-f) as derived from impedance spectra. Resistance due to SEI is denoted as R_{SEI} (a, d) and charge transfer as R_{ct} (b, e). C_{int} is the intercalative capacitance.

3.12. Rietveld fit for (a) LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$ (b) LiNi$_{0.8}$Co$_{0.15}$Mg$_{0.05}$O$_2$ derived from nitrates-melt decomposition route.

3.13. Scanning Electron micrographs of (a) LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$ (b) LiNi$_{0.8}$Co$_{0.15}$Mg$_{0.05}$O$_2$ derived from nitrates-melt decomposition route.

3.14. Voltage vs. composition plot for LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$ (left) and capacity retention plot (right) for LiNi$_{0.8}$Co$_{0.15}$Mn$_{0.05}$O$_2$/Li cell in the voltage range between 3 V and 4.5 V. Figures 3.14 (a) & (b) for LiNi$_{0.8}$Co$_{0.15}$Al$_{0.05}$O$_2$, and 3.14 (c) & (d) for LiNi$_{0.8}$Co$_{0.15}$Mg$_{0.05}$O$_2$.

3.15. Powder X-ray diffraction patterns of LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ obtained by nitrates melt decomposition at (a) 750 °C (b) 800 °C (c) 850 °C and (d) 900 °C.

3.16. Powder XRD Rietveld fit for LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ derived from nitrates-melt decomposition. Inset is the scanning electron microscopic image.

3.17. Voltage vs. composition plot for LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ vs. Li$^+$ and (b) capacity retention plot.

4.1. Schematic of LiNMC structure showing lithium ion diffusion in the 2D space between MO$_2$ layers where M= Mn, Co, Ni (a) without cation site exchange (b) with cation site exchange between Ni$^{2+}$/Li$^+$.

4.2. Powder X-ray diffraction patterns of LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ obtained by sol gel method and post calcined at (a) 800 °C and (b) 1000 °C.

4.3. Powder X-ray diffraction patterns of LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ obtained by combustion method (a) as prepared (b) sample heated to 800 °C.

4.4. XRD Rietveld refinement fit for (a) sol gel sample calcined at 1000 °C and (b) Combustion derived sample calcined at 800 °C.

4.5. Electrochemical galvanostatic cycles for LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ vs. metallic Li at 1 Li in 5h rate prepared by (a) sol-gel method and (b) combustion method. (c) discharge capacity vs. cycle number and (d) percentage capacity retention plot for LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ cells cycled between 3-4.5 V at room temperature (~30 °C) with
LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ prepared by - ● - sol-gel and - ▲ - combustion method.

4.6. Powder X-ray diffraction pattern demonstrating structural stability of NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ on exposure to air, (a) as-prepared NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ (Rhombohedral; O3 Phase), (b) NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ after 15 days of exposure to air (Monoclinic O1 phase), and (c) NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ after 30 days of exposure to air (Rhombohedral; P3 Phase).

4.7. Scanning electron microscopic images of (a) as-prepared NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$; (b) NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ after 15 days air exposure; (c) NaNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ after 30 days air exposure, and (d) EDAX spectrum showing the composition of various elements in the NaNMC. Atomic ratio of the elements is Na: Ni: Mn: Co = 1.03:0.33:0.33:0.33.

4.8. Infrared spectrum of NaNMC after exposing the sample to air for several days. The peaks corresponding to 863 and 1420 cm$^{-1}$ are due to carbonate group of Na$_2$CO$_3$.

4.9. (b)- (e) X-ray diffraction patterns showing structural evolution of LiNMC during ion exchange process. XRD pattern of NaNMC is shown in (a) for comparison. Absence of peak at 16.7° in (b) shows the disappearance of NaNMC after first ion exchange. Evolution of new peaks at 18.2° and 18.8° shows transformation into LiNMC phase. For the reason of better clarity, the uninteresting regions (20°-30°) are not shown.

4.10. XRD Rietveld refinement fit for LiNMC synthesized by ion exchange method. The large value for the integrated intensity ratio of $I_{(003)}/I_{(104)}$ peak shows the formation of ordered LiNMC.

4.11. (a) Composition vs. voltage plot derived from galvanostatic charge-discharge cycles for LiNi$_{0.33}$Mn$_{0.33}$Co$_{0.33}$O$_2$ sample synthesized by ion exchange method. Polarisation as low as <0.1 V is due to ease of lithium diffusion in the material without site exchange. (b) Capacity retention plot showing the retention of more than 95% of initial discharge capacity (180 mAh. g$^{-1}$) after 30 cycles.

5.1. Structure of (a) crystalline V$_2$O$_5$ and (b) V$_2$O$_5$ xerogels. In crystalline V$_2$O$_5$, single layers of V$_2$O$_5$ are arranged in orderly manner whereas in V$_2$O$_5$ xerogel, bilayers of single V$_2$O$_5$ layers are arranged as stacks along the c-axis of monoclinic unit cell. Oxygen coordination of vanadium resembles a square pyramid in both structures. Oxygen atoms shown between the layers represent oxygen of water molecules.

5.2. Schematic illustration for the Synthesis and the Structure of V$_2$O$_5$/CNTs.
The functionalization of carbon nano tubes in step-1 results in the modification of CNT surface with functional groups like -OH, -COO', -CO, etc. Vanadium alkoxide, (VO(OR)₃), hydrolyzes to vanadium oxytrihydroxide, (VO(OH)₃), that undergoes co-ordination expansion with functional groups present on CNT surface as depicted by the inflated picture at the bottom followed by condensation to V₂O₅ layers grafted on CNTs.

5.3. Structural characterization of V₂O₅- CNT composite (a) Powder X-ray diffraction pattern recorded with Cu Kα radiation; the diffracted peaks marked with ‘#’ corresponds to V₂O₅ and peaks marked with ‘**’ to CNTs. (b) Infrared spectrum of V₂O₅- CNT composite showing various bending and stretching vibrations of V-O bonds of V₂O₅, hydroxyl groups from either of intercalated H₂O molecules or from functional groups on CNT.

5.4. Morphological characterization of V₂O₅/CNT composite. (a) Scanning electron microscopy image showing the morphology of V₂O₅-Carbon nanotube. (b) Transmission electron microscopy image showing absence of V₂O₅ particles or agglomeration over CNT surface. (c) and (d) High resolution Transmission electron micrograph showing growth of (-114) plane of V₂O₅ parallel to (002) planes of CNT lattice. The (062) planes of V₂O₅ which are perpendicular to (-114) planes are also shown in (d).

5.5. X-ray photoelectron spectrum for V₂O₅/CNT surface. (a) Survey spectrum showing C (1s), V (2p), V (3p), O (1s) emanating from the sample, and Ag (3d), Ag (3p) and Ag (3s) are due to silver paste used for fixing the sample over stub. (b) Deconvoluted C (1s) region of XP spectrum showing prominent carbon with graphitic nature, which comes from CNTs. The C (1s) intensity appears at higher binding energies originated from organic carbon of functional groups. (c) The V(2p) binding energy region showing spin orbit splitting of 2p½ and 2p½. (d) O (1s) region showing prominent peak corresponding to oxide ion of V₂O₅ layers and higher binding energy regions corresponding to oxygen of functional groups and H₂O.

5.6. Galvanostatic cycling showing voltage-composition profile of different types of V₂O₅ samples vs. Li cycled at C/2 (1Li in 2h) rate in the voltage range of 1.5-4.0 V. (a) Voltage composition profile of V₂O₅ anchored CNT sample vs. Li cell. (b) Voltage composition profile of V₂O₅ xerogel vs. Li; V₂O₅ xerogel is prepared under identical condition but without the functionalized CNTs. (c) Voltage composition profile of commercially available crystalline V₂O₅ sample vs. Li. The inset to each figure shows the corresponding plot of capacity retention as a function of cycle number.

5.7. Galvanostatic cycling behavior of V₂O₅- CNT composite at various rates in the voltage range of 1.5-4.0 V. Inset shows the capacity...
5.8. Potentiostatic cycling to understand the charge storage mechanism in V$_2$O$_5$/CNT electrodes. (a) Cyclic voltammograms at varying sweep rates for V$_2$O$_5$/CNT composite electrode vs. Li cell with 1M LiClO$_4$/EC-DMC electrolyte.

5.9. Plot showing linear relationship of log v vs. log i for cathodic (discharge) and anodic (charge) sweeps of cyclic voltamogram. CV experiments were carried out at different scan rates of 0.1 to 5 mV/sec and current values at different potentials were plotted as a function of scan rate. From the slope of the straight line obtained, b- value is calculated during cathodic and anodic sweeps.

5.10. Dependence of slope ‘b’ (derived from linear fit of log i vs. log v) as a function of cell voltage. As explained in previous section (Fig. 5.9), value of ‘b’ is calculated and is plotted as a function of voltage V. Slope ‘b’ is comparatively lower at peak potentials indicating the dominance of diffusion limited intercalation. Whereas it is near to 1 at other potentials indicating more of capacitive contribution.

5.11. The plots of $v^{1/2}$ vs. $i/v^{1/2}$ used for calculating constants a_1 and a_2 at different potentials.

According to power law relationship, $i = av$ for non diffusion limited processes and $i = av^{1/2}$ for diffusion limited processes. Thus, total current $i = av + av^{1/2}$ and $i(V)/v^{1/2} = a_1v^{1/2} + a_2$. Current values at different potentials were calculated from cyclic voltammogram at different scan rates of 0.1 to 5 mV/sec. Plots of $i/v^{1/2}$ vs. $v^{1/2}$ have been drawn at different potentials and from the straight line obtained value of a_1 (slope) and a_2 (intercept) are calculated.

5.12. Capacitive and diffusion controlled charge storage contributions separated with cyclic voltammogram at 0.1mV/s scan. The shaded area in blue corresponds to the cyclic voltammogram collected on a swagelok cell using bare CNTs in amount equal to what used in our composite electrode. The grey shaded portion of the CV corresponds to capacitive contribution.

5.13. Total stored charges as a function of CV scan rate used for deriving charge stored in the inner (q_i^*) and outer surface (q_o^*).

5.14. Adsorption- desorption plot and BET plots for 25% loading of V$_2$O$_5$ ((a), (b)) and 75% loading of V$_2$O$_5$ (figure (c), (d)).

5.15. Gravimetric energy storage with V$_2$O$_5$/CNT electrode. (a) Plot of total specific capacity together with capacity contribution due to diffusion controlled intercalation and capacity due to pseudocapacitance as a function of percentage V$_2$O$_5$ loading. (b) Bar chart showing total stored charges in C/g together with percentage contribution from capacitive...
and intercalation as a function of percentage V$_2$O$_5$ loading. All the values shown here are calculated using CV recorded at 0.1 mV/s scan rate.

5.16. X-ray photoelectron spectrum of V$_2$O$_5$/CNT electrode after electrochemical reduction to 1.5 V.

5.17. X-ray photoelectron spectrum of Li 1S region of lithium intercalated V$_2$O$_5$/CNT electrode at 1.5 V. Li 1S spectra appeared around 56.1 eV.

5.18. X-ray photoelectron spectra of V (2p) region of V$_2$O$_5$/CNT electrode after electrochemical reduction to 1.5 V in comparison with initial state. (a) The V (2p) binding energy region showing spin orbit splitting of 2p$_{3/2}$ and 2p$_{1/2}$ showing V$^{5+}$ state. (b) The V (2p) binding energy region of electrochemically reduced electrode showing broad V (2p) spectrum which is deconvoluted into sets of 2p$_{3/2}$ and 2p$_{1/2}$ of V$^{5+}$ and V$^{4+}$ state. The discharge curve for V$_2$O$_5$/CNT vs. Li cell used here is given on the left.

5.19. Schematic showing charge storage mechanism of V$_2$O$_5$-CNT composites.

5.20. Ragone plot showing (a) gravimetric and (b) volumetric energy and power density of V$_2$O$_5$/CNT battery hybrid supercapacitor electrode. The total weight of V$_2$O$_5$ loading along with CNT weight is used here for energy and power density calculations.

6.1. Voluminous Li$_4$Ti$_5$O$_{12}$ formed after the combustion of corresponding metal nitrates with glycine at 800 °C.

6.2. Powder X-ray diffraction patterns for the products formed by the combustion of lithium and titanium nitrates with glycine at (a) 500 °C, (b) 700 °C, (c) 800 °C and (d) Li$_4$Ti$_5$O$_{12}$ prepared by solid-state method.

6.3. Scanning electron micrographs for nano crystalline Li$_4$Ti$_5$O$_{12}$ at different magnifications synthesized by combustion method. Figure shows highly porous Li$_4$Ti$_5$O$_{12}$ with pore size ranging between 150 nm to 1.5 μm.

6.4. (a) and (b) transmission electron micrographs for Li$_4$Ti$_5$O$_{12}$, (c) electron diffraction pattern, and (d) line profile of electron diffraction.

6.5. BET measurements of combustion and solid state derived LTO samples, (a) Typical N$_2$ adsorption-desorption plot (b) BJH pore size distribution.

6.6. Cyclic voltammogram of combustion derived Li$_4$Ti$_5$O$_{12}$. A peak at 1.5 V is appeared during anodic reduction and is completely reversible (1.64 V) in the cathodic sweep.
6.7 Structure of (a) spinel Li$_4$Ti$_5$O$_{12}$ and (b) ordered rocksalt-phase Li$_7$Ti$_5$O$_{12}$; (c) voltage-composition curves showing the electrochemical transformation of Li$_4$Ti$_5$O$_{12}$ – Li$_7$Ti$_5$O$_{12}$ during galvanostatic charge-discharge cycles at C/2 rate at 30 °C.

6.8. Capacity-voltage profile for nanocrystalline Li$_4$Ti$_5$O$_{12}$ synthesized by combustion method at different rates. Inset shows capacity voltage profile for bulk Li$_4$Ti$_5$O$_{12}$ prepared by solid-state method.

6.9. Capacity vs. cycle number plot for nanocrystalline Li$_4$Ti$_5$O$_{12}$ synthesized by combustion method at different discharge rates. Inset shows capacity vs. cycle number for bulk Li$_4$Ti$_5$O$_{12}$.

6.10. Ragone plot comparing the performance of Li$_4$Ti$_5$O$_{12}$ prepared by (▲) combustion method and (●) solid-state method when paired with metallic lithium; (ж) DOE benchmark for HEVs.