CONTENTS

1. INTRODUCTION

 REVIEW OF LITERATURE

 SCOPE OF THE PRESENT STUDY

2. MATERIALS AND METHODS

 2.1. Rearing Techniques

 2.1.1. Rearing of nymphal instars

 2.1.2. Rearing of pupae

 2.1.3. Rearing of adults

 2.2. Studies on life history of *Scirtothrips bispinosus*

 2.2.1. Influence of different temperature regimes and photoperiod

 2.2.2. Influence of leaf surface and leaf age

 2.2.3. Effect of tea clones

 2.2.4. Life table studies

 2.3. Ecology of *Scirtothrips bispinosus*

 2.3.1. Studies on seasonal abundance and vertical distribution

 2.3.2. Influence of abiotic factors

 2.3.3. Spatial distribution of thrips on tea shoots

 2.3.4. Incidence of thrips on shaded and unshaded tea bushes

 2.3.5. Influence of age of the field from pruning

 2.3.6. Influence of edge effect on populations of thrips

 2.3.7. Studies on clonal susceptibility
2.4. Changes in the biochemical constituents of tea leaves due to thrips feeding

2.4.1. Estimation of chlorophyll and carotenoids

2.4.2. Total polyphenols and catechins

2.4.3. Studies on catechin fractions

2.4.3.1. Preparation of methanolic extract for the estimation of catechin fractions

2.4.3.2. Estimation of catechin fractions using HPLC

2.4.4. Estimation of amino acids

2.4.5. Total carbohydrates

2.4.6. Lipids

2.4.7. Estimation of soluble sugars

2.4.8. Estimation of dry matter content

2.4.9. Moisture content

2.5. Influence of thrips infestation on black tea quality

2.6. Survey on natural enemies

2.6.1. Rearing of predators

2.7. Studies on life history

2.7.1. Studies on the life history of Franklinthrips vespiformis Crawford, Orius sp. and Amblyseius cucumeris Oudemans

2.7.2. Studies on prey population Vs predator density

2.8. Studies on predatory potential

2.8.1. Predatory efficiency of F. vespiformis, Orius sp. and A. cucumeris on S. bispinosus (No choice feeding)
2.8.2. Prey stage preference of *F. vespiformis*, *Orius* sp. and *A. cucumeris* on different life stages of *S. bispinosus*

2.9. Management of tea thrips

2.9.1. Evaluation of colour sticky traps for thrips control

2.9.2. Laboratory evaluation of neem kernel aqueous extract (NKAЕ) & vermiwash against tea thrips

2.9.3. Field evaluation of paraffinic oil against tea thrips

2.10. Statistical analysis

3.0. RESULTS & DISCUSSION

SUMMARY

BIBLIOGRAPHY
ABBREVIATIONS USED IN THIS THESIS

$ dollar
% per cent
" inches
µ micron
µL micro litre
µm micro meter
ca. approximately
cal calorie
cfm cubic feet per meter
cm centi meter
cm² per square centi meter
cm² square centi meter
cv. cultivar
dia. diameter
EDTA ethylene diamine tetra acetic acid
Fig., Figure
g gram
h hour (s)
H₂SO₄ Sulphuric acid
ha hectare
HCl hydrochloric acid
HPLC High Performance Liquid Chromatography
IPM Integrated Pest Management
IS Indian Standard
ISO International Organization for Standardization
kg kilo gram
KOH potassium hydroxide
L Litre
LCI Leaf Curl Index
List of Tables

Table 1. Standardisation of pupal rearing technique

Table 2. Morphometrics (size) of different life stages of *S. bispinosus*

Table 3. No. of eggs laid during the first five days of the oviposition period, percentage hatchability, and the proportion of males and females reaching adulthood in *S. bispinosus* at three constant temperatures under a 12L:12D photoperiod

Table 4. Developmental duration of *S. bispinosus* at three constant temperatures under 12L:12D photoperiod

Table 5. Oviposition rates and various durations (in days) of adult females of *S. bispinosus* at three different temperatures under a 12L:12D photoperiod

Table 6. Parameters of population increase in *S.bispinosus* at three different temperatures under 12L:12D photoperiod

Table 7. Developmental duration of *S. bispinosus* on adaxial and abaxial surfaces of different age groups of tea leaves

Table 8. Oviposition rates and various durations (in days) of adult females of *S.bispinosus* on adaxial and abaxial surfaces of different age groups of tea leaves

Table 9. Parameters of population increase in *S.bispinosus* on adaxial and abaxial surfaces of different age groups of tea leaves

Table 10. Developmental duration of the tea thrips, *S. bispinosus* on different tea clones

Table 11. Oviposition rates and various durations (in days) of adult females adults of *S.bispinosus* on different tea clones
Table 12. Parameters of population increase in S.bispinosus on different tea clones

Table 13. Multiple regression analysis among weather factors and S. bispinosus

Table 14. Vertical distribution of S. bispinosus on tea bushes

Table 15. Distribution of Scirtothrips bispinosus on adaxial (upper) surface of tea leaves

Table 16. Distribution of Scirtothrips bispinosus on abaxial (lower) surface

Table 17. Distribution of thrips eggs on adaxial (upper) surface of tea leaves

Table 18. Distribution of thrips eggs on abaxial surface of tea leaves

Table 19. Influence of age of the field (since pruning) on the incidence of S. bispinosus

Table 20. Bio chemical changes in tea leaves due to thrips infestation

Table 21. Catechin fractionations and their composition in thrips infested tea leaves

Table 22. Quality Changes in CTC tea due to thrips infestation

Table 23. Natural enemies of tea thrips, Scirtothrips bispinosus

Table 24. Feeding efficiency of predatory thrips, Franklinothrips vespiformis on different life stages of S.bispinosus

Table 25. Per day consumption by F. vespiformis on different life stages of S. bispinosus

Table 26. No. of eggs laid during the first five days of the oviposition period, percentage hatchability in F.vespiformis

Table 27. Developmental duration of different life stages of predatory thrips, F.vespiformis
Table 28. Oviposition rates and various durations (in days) of female adults of *F.vespiformis* at three different temperatures under a 12L:12D photoperiod

Table 29. Feeding efficiency of *Orius* sp. on different life stages of *S.bispinosus* (No choice feeding)

Table 30. No. of eggs laid during the first five days of the oviposition period, percentage hatchability in *Orius* sp.

Table 31. Developmental duration of different life stages of Antyhocorid predator, *Orius* sp.

Table 32. Oviposition rates and various durations (in days) of female adults of *Orius* sp.

Table 33. Parameters of population increase in *Orius* sp.

Table 34. Feeding efficiency of *Amblyseius cucumeris* on different life stages of *S.bispinosus* (No choice feeding)

Table 35. Oviposition rate, percentage hatchability and percentage maturity or survival rate in immatures of *Amblyseius cucumeris*

Table 36. Developmental duration in days (Mean±SE) of each life stage of *Amblyseius cucumeris*

Table 37. Oviposition rates and various durations (in days) of female adults of *A.cucumeris* under a 12L:12D photoperiod

Table 38. Parameters of population increase in *A.cucumeris* under 12L:12D photoperiod

Table 39. Laboratory evaluation of NKAE & vermiwash against tea thrips, *Scirtothrips bispinosus*

Table 40. Field evaluation of paraffinic oil against tea thrips
List of Figures

Fig.1. Different tea growing districts of south India

Fig.2. Pest complex of tea

Fig.3. Pattern of blocks for sampling tea thrips to study the influence of edge effect

Fig.4. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in *S. bispinosus* at 20°C. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig.5. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in *S. bispinosus* at 25°C. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig.6. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in *S. bispinosus* at 30°C. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig.7. Population trends of *Scirtothrips bispinosus* and weather factors

Fig.8. Percentage distribution of tea thrips (adults & nymphs) on tea shoot

Fig.9. Distribution of *S. bispinosus* eggs on leaf surface

Fig.10. Influence of shade on population density of *S. bispinosus*

Fig.11. Relationship between the age of the field since pruning and the population density of the thrips *S. bispinosus*

Fig.12. Influence of edge effect on the populations of the tea thrips, *S. bispinosus*

Fig.13. Susceptibility of different tea clones to thrips infestation
Fig. 14. Catechin fractionation in thrips infested tea leaves

Fig. 15. Influence of prey density (S. bispinosus) on predator population (Frankliionothrips vespiiformis) in tea ecosystem

Fig. 16. Prey stage preference by F. vespiiformis on different life stages of S. bispinosus

Fig. 17. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in F. vespiiformis. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig. 18. Influence of prey density (S. bispinosus) on Orius sp.

Fig. 19. Prey stage preference by Orius sp. on different life stages of S. bispinosus

Fig. 20. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in Orius sp. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig. 21. Influence of prey density (S. bispinosus) on the population of predatory mites

Fig. 22. Prey stage preference by Amblyseius cucumeris on different life stages of S. bispinosus

Fig. 23. Age specific survival rate (lx), age-specific fecundity rate (mx) and lxmx curves in A. cucumeris. lx=(eclosion of eggs) x (proportion of females alive at age x), mx= (proportion of females) x (age specific oviposition).

Fig. 24. Performance of yellow poly frill sheets in controlling tea thrips population

Fig. 25. Performance of yellow film sticky traps in thrips infested tea fields

Fig. 26. Performance of blue film sticky traps in thrips infested tea fields
LIST OF PLATES

Plate.1. Tea (*Camellia sinensis*)
Plate.2. Tea seeds and flower
Plate.3. Panoramic view of a tea field
Plate.4. Vegetative propagation of tea plants
Plate.5. Planting of young tea
Plate.6. Tea Thrips, *Scirtothrips bispinosus* (External morphology)
Plate.7. *S. bispinosus*, nymphal instars foraging on tea leaf
Plate.8. Pruned tea field
Plate.9. A tea field recovering from pruning
Plate.10. Thrips damage to tea
Plate.11. Rearing of *S. bispinosus* nymphal instars on leaf disc
Plate.12. Rearing of *S. bispinosus* pupae
Plate.13. Rearing of *S. bispinosus* adults on potted tea plants
Plate.14. Rearing of predators
Plate.15. Tea clones used for rearing tea thrips
Plate.16. Crop weather observatory of UPASI Tea Research Foundation, Regional Centre, Glysdale Farm, Coonoor
Plate.17. Three leaves and a bud, upper (adaxial) and lower (abaxial) surfaces of tea leaves
Plate.18. Tea field with shade trees (*Grevillia robusta*)
Plate.19. Tea field without shade trees
Plate.20. Predatory thrips, *Frankliniothrips vespiformis* (External morphology)
Plate.22. Predatory mite, *Amblyseius cucumeris*-Adult
Plate.23. Sticky trap trial for thrips control in new clearing area

Plate.24. Different life stages of tea thrips, *Scirtothrips bispinosus*

Plate.25. *Scirtothrips bispinosus* (Female)

Plate.26. *Scirtothrips bispinosus* (Male)

Plate.27. Morphometric analysis, *S. bispinosus* (Female)

Plate.28. Morphometric analysis, *S. bispinosus* (Male)

Plate.29. *Amblyseius fallacis* – Egg

Plate.30. *Amblyseius fallacis*, Adult

Plate.31. *Amblyseius degenrans*, Adult

Plate.32. Life stages of *Franklinothrips vespiformis*

Plate.33. *Orius* sp. feeding on thrips larva

Plate.34. Exuviate of *Orius* sp.

Plate.35. *Amblyseius cucumeris*-Egg, laid on leaf hair

Plate.36. *Amblyseius cucumeris*, feeding on thrips larva