CHAPTER IV

COUNTABILITY AND PARALINDELOF PROPERTY

IN FUZZY TOPOLOGY

1. INTRODUCTION:

The study of the first axiom of countability, the second axiom of countability and separability in fuzzy topology was carried out by C. K. Wong [52 & 53], S. R. Malghan and S. S. Benchalli [33 & 5] and many others.

In this chapter, the concept of α-local base and α-base have been defined. These concepts have been used to introduce and study the first axiom of countability (α-C$_1$), the second axiom of countability (α-C$_{11}$) and separability (α-separable) in fuzzy topology. Among other results, it is proved that α-C$_1$ property is invariant under F-continuous and F-open surjections and that α-separability is invariant under F-continuous surjections. Further it is also proved that an open crisp subspace of a α-separable fts is α-separable and that every crisp subspace of a α-C$_{11}$ fts is α-C$_{11}$. It is also proved that every α-C$_{11}$ fts is α-Lindelof.

In the third section of this chapter, the new class of α-paralindelof fts has been introduced and studied. In this section, it is proved that α-paralindelof property is a generalization of α-Lindelof property, α-paracompactness and α-C_{11} property. It is also proved that every closed crisp subspace of a α-paralindelof fts is α-paralindelof and that the property of a fts being α-paralindelof is invariant under F-continuous, F-open surjections.

In the fourth section of this chapter, a weaker form of α-paralindelof property namely weakly α-paralindelof property in fuzzy topology is introduced and studied. This new concept is based on the concept of α-point countable family of fuzzy sets introduced in this section. It is proved that a closed crisp subspace of weakly α-paralindelof fts is weakly α-paralindelof and that weakly α-paralindelof property is invariant under F-continuous, F-open surjections.

The fifth section of the present chapter is devoted to the study of a stronger form of α-paralindelof property. In this section, the class of strongly α-paralindelof fts is introduced and studied, using the concept of α-star countable collection of fuzzy sets. It is proved that a closed crisp subspace of a strongly α-paralindelof fts is strongly α-paralindelof and that the class of strongly α-paralindelof fts is invariant under F-continuous, F-open surjections.

In the sixth section of this chapter, the concept of nearly α-paralindelof property in fuzzy topology is introduced and studied. It is proved that this concept
generalizes α-compactness, nearly α-compactness, α-paracompactness, nearly α-paracompactness and α-paralindelof property. It is also proved that a fts X is nearly α-paralindelof if and only if every fuzzy regular open α-shading of X has a α-locally countable, fuzzy regular open refinement. Invariance under maps, of such class of fts is also obtained.

The next section of this chapter contains the study of nearly weakly α-paralindelof fts. In this section, the new concept of nearly weakly α-paralindelof property in fuzzy topology is introduced and studied. It is shown that this concept is a weaker form of α-compactness, nearly α-compactness, α-paracompactness, nearly α-paracompactness, weakly α-paracompactness and nearly weakly α-paracompactness. A characterization and an invariance under maps of such a class of fts are also obtained.

Finally in the eighth section of this chapter, the concept of nearly strongly α-paralindelof property in fuzzy topology is introduced and studied. It is shown that this concept generalizes strong α-paracompactness, nearly strongly α-paracompactness and strongly α-paralindelof property. An invariance of such a class under maps is obtained.

Most of the ideas in this chapter are motivated by the work of Gantner et.al [16] and the corresponding concepts in general topology.
2. α - COUNTABILITY AND α - SEPARABILITY IN FTS

The study of separability and countability axioms in fuzzy topology was carried out by C. K. Wong [52 & 53], S. R. Malghan and S. S. Benchalli [33 & 5] and many others.

In this section the concepts of α - local base, α - C₁, α - separability and α - C₁₁ in fuzzy topology have been introduced and studied. It is proved among other results, that α - C₁ is invariant under F - continuous, F - open surjections, α - separability is invariant under F - continuous surjections, α - separability is open hereditary and that α - C₁₁ is a hereditary property.

The concept of α - local base is introduced in the following

2.1 Definition: Let α ∈ [0, 1) (resp. α ∈ (0, 1]). Let (X, T) be a fts and x ∈ X. A subfamily ℋ of T is called a α - local base (resp. α* - local base) at x iff B(x) ≥ α (resp. B(x) ≥ α) for each B ∈ ℋ_x and for every A ∈ T with A(x) > α (resp. A(x) ≥ α), there exists a member B₀ ∈ ℋ_x such that B₀ ≤ A.

The class of α - C₁ fts is introduced in the following.

2.2 Definition: Let α ∈ [0, 1) (resp. α ∈ (0, 1]). A fts (X, T) is said to be α - C₁ (resp.α* - C₁) iff every x ∈ X has a countable α - local base (resp. countable α* - local base).

Separability in fuzzy topology is defined in the following.
2.3 Definition: Let $\alpha \in [0, 1)$ (resp. $\alpha \in (0, 1]$). A fts (X, T) is said to be α-separable (resp. α^*-separable) iff there exists a sequence of points \(\{x_i : i = 1, 2, 3, \ldots \} \) such that for every member A of T and $A \neq 0$ there exists a x_i such that $A(x_i) > \alpha$ (resp. $A(x_i) \geq \alpha$).

The following result contains a property of α-C1 fts.

2.4 Theorem: If (X, T) is a α-C1 fts then for each $x \in X$ there exists a countable α-local base of x say $\mathcal{V} = \{ A_i : i = 1, 2, 3, \ldots \}$ such that $A_1 \geq A_2 \geq A_3 \geq \ldots$.

Proof: Let (X, T) be a α-C1 fts. Let $x \in X$. Then there exists a countable α-local base say $\mathcal{B} = \{ B_i : i = 1, 2, 3, \ldots \}$ of x. Now define $A_i = B_i,$ $A_2 = B_1 \land B_2,$ $A_3 = B_1 \land B_2 \land B_3,$ \ldots. Let $\mathcal{V} = \{ A_i : i = 1, 2, 3, \ldots \}$. \mathcal{V} is a α-local base at x; Since \mathcal{B} is a α-local base at x, for each $B_i \in \mathcal{B}$, $B_i(x) > \alpha$.

Therefore $A_i(x) > \alpha$ for each i. Let $G \in T$ with $G(x) > \alpha$. Again, since \mathcal{B} is a α-local base, there exists a $B_{i_0} \in \mathcal{B}$ such that $B_{i_0} \leq G$. Also $B_{i_0}(x) > \alpha$ for each $i = 1, 2, 3, \ldots\ i_0$, as each $B_i \in \mathcal{B}$ and \mathcal{B} is a α-local base at x. Therefore $\bigwedge_{i = 1}^{i_0} B_i(x) > \alpha$. That is $(A_{i_0})(x) > \alpha$, as $A_{i_0} = B_1 \land B_2 \land B_3 \land \ldots \land B_{i_0}$. Also $A_{i_0} \leq B_{i_0}$. But $B_{i_0} \leq G$. Therefore $A_{i_0} \leq G$. Thus \mathcal{V} is a countable α-local base at x such that $A_1 \geq A_2 \geq A_3 \geq \ldots$.

The next result shows that the class of α-C1 fts is invariant under F-continuous, F-open surjections.
2.5 Theorem: Let \(f : (X, T) \to (Y, S) \) be an \(F \)-continuous, \(F \)-open surjection. If \((X, T)\) is \(\alpha - C_1 \) (resp. \(\alpha^* - C_1 \)) fts then \((Y, S)\) is also \(\alpha - C_1 \) (resp. \(\alpha^* - C_1 \)) fts.

Proof: Let \(f : (X, T) \to (Y, S) \) be a \(F \)-continuous, \(F \)-open surjection and \((X, T)\) is \(\alpha - C_1 \) fts. To prove that \((Y, S)\) is \(\alpha - C_1 \) fts. Let \(y \in Y \). Then there exists \(x \in X \) such that \(f(x) = y \). Since \((X, T)\) is \(\alpha - C_1 \), \(x \) has a countable \(\alpha \)-local base for \(T \), say \(\mathcal{B}_x \). Then the family \(\mathcal{U}_y = \{ f(A) : A \in \mathcal{B}_x \} \) forms a countable \(\alpha \)-local base at \(y \) in \(S \); For each \(A \in \mathcal{B}_x \), \(A(x) > \alpha \) for each \(A \). Let \(\mathcal{V}_y \) be a subfamily of \(S \) which is countable, as \(\mathcal{B}_x \) is countable. Let \(\mathcal{V}_y \) be countable and \(\mathcal{V}_x \) is a subfamily of \(S \) which is countable, as \(\mathcal{B}_x \) is countable. Let \(f(A) \in \mathcal{V}_y \), then

\[[f(A)](y) = \bigvee_{z \in f^{-1}(y)} A(z) > \alpha, \text{ since } x \in f^{-1}(y) \text{ and } A(x) > \alpha \text{ for each } A \in \mathcal{B}_x. \]

Further, let \(G \in S \) with \(G(y) > \alpha \). Then \(f^{-1}(G) \in T \), as \(f \) is \(F \)-continuous and \([f^{-1}(G)](x) = G(f(x)) = G(y) > \alpha \). Therefore \(f^{-1}(G) \in T \) and \(f^{-1}(G)(x) > \alpha \).

Since \(\mathcal{B}_x \) is \(\alpha \)-local base at \(x \), there exists \(A_0 \in \mathcal{B}_x \) such that \(A_0 \le f^{-1}(G) \) where \(A_0(x) > \alpha \). Therefore \(f(A_0) \le f[f^{-1}(G)] = G \) as \(f \) is onto. And \(f(A_0)(y) \rangle \alpha \) = \(\bigvee_{z \in f^{-1}(y)} A(z) > \alpha \). Therefore \(f(A_0) \rangle \alpha \). Thus for \(G \in S \) with \(G(y) > \alpha \), there exists \(f(A_0) \) in \(\mathcal{V}_y \) such that \(f(A_0) \le G \) and \(f(A_0)(y) \rangle \alpha \). Therefore \(\mathcal{V}_y \) is countable \(\alpha \)-local base at \(y \) in \(S \). Hence \((Y, S)\) is a \(\alpha - C_1 \) fts.

The following result gives an invariant property for \(\alpha \)-separability.
2.6 Theorem: Let \(f: (X, T) \rightarrow (Y, S) \) be an \(F \)-continuous surjection. If \((X, T)\) is \(\alpha \)-separable (resp. \(\alpha^* \)-separable) fts then \((Y, S)\) is also \(\alpha \)-separable (resp. \(\alpha^* \)-separable) fts.

Proof: Let \((X, T)\) be a \(\alpha \)-separable fts. Then there exists a sequence of points \(\{ x_i : i = 1, 2, 3, \ldots \} \) in \(X \) such that for every member \(A \) of \(T \) with \(A \neq \emptyset \) there exists an \(x_i \) such that \(A(x_i) > \alpha \). To prove \((Y, S)\) is also \(\alpha \)-separable. Consider \(\{ f(x_i) : i = 1, 2, 3, \ldots \} \) which is a sequence of points in \(Y \). Let \(B \in S \) and \(B \neq \emptyset \).

Then \(f^{-1}(B) \in T \) and \(f^{-1}(B) \neq \emptyset \). For \(B \neq \emptyset \) implies that there exists \(y \in Y \) such that \(B(y) > 0 \) and for \(x \in X \) such that \(f(x) = y \), \(f^{-1}(B)(x) = B(f(x)) = B(y) > 0 \). That is \(f^{-1}(B)(x) > 0 \). Therefore there exists \(x \) in \(X \) such that \(f^{-1}(B)(x) > 0 \).

Therefore \(f^{-1}(B) \neq \emptyset \). Since \((X, T)\) is \(\alpha \)-separable there exists \(x_{i_0} \in \{ x_i : i = 1, 2, 3, \ldots \} \) such that \(f^{-1}(B)(x_{i_0}) > \alpha \). Therefore \(B[f(x_{i_0})] > \alpha \). Thus for \(B \in S \) and \(B \neq \emptyset \), there exists a point \(f(x_{i_0}) \) in \(\{ f(x_i) : i = 1, 2, 3, \ldots \} \) such that \(B[f(x_{i_0})] > \alpha \). Hence \((Y, S)\) is \(\alpha \)-separable fts. The proof is similar for \(\alpha^* \)-case.

The concept of a base is introduced in the following.

2.7 Definition: Let \(\alpha \in [0, 1) \) (resp. \(\alpha \in (0, 1] \)). Let \((X, T)\) be a fts. A subfamily \(\mathcal{B} \) defined by \(\mathcal{B} = \{ B : B \in T, B \text{ is nonempty of order } \alpha \} \) (resp. \(\mathcal{B}^* = \{ B : B \in T, B \text{ is nonempty of order } \alpha^* \} \)) of \(T \) is said to be a
\(\alpha \) - base (resp. \(\alpha^* \) - base) if every member \(A \) of \(T \) with \(A \neq 0 \) is expressed as a union of members of \(\emptyset \) (resp. \(\emptyset^* \)).

The class of \(\alpha \) - C_{11} fts is introduced in the following.

2.8 Definition: A fts \((X, T) \) is said to be \(\alpha \) - C_{11} (resp. \(\alpha^* \) - C_{11}) iff there exists a countable \(\alpha \) - base (resp. \(\alpha^* \) - base) for \(T \).

The following result gives an interrelation between \(\alpha \) - C_{11} and \(\alpha \) - C_{1} fts.

2.9 Theorem: Every \(\alpha \) - C_{11} (resp. \(\alpha^* \) - C_{11}) fts is \(\alpha \) - C_{1} (resp. \(\alpha^* \) - C_{1}).

Proof: Let \((X, T) \) be a \(\alpha \) - C_{11} fts. Let \(x \in X \), to prove that there exists a countable \(\alpha \) - local base at \(x \). Since \((X, T) \) is \(\alpha \) - C_{11}, it follows that \(T \) has a countable \(\alpha \) - base say \(\emptyset = \{ B : B \in T, B \text{ is nonempty of order } \alpha \} \). Let \(\emptyset_x \subseteq \emptyset \) be defined by \(\emptyset_x = \{ B : B \in \emptyset, B(x) > \alpha \} \) clearly \(\emptyset_x \) is countable. Let \(A \in T \) with \(A(x) > \alpha \).

Since \(A \in T \) and \(\emptyset \) is a \(\alpha \) - base for \(T \), \(A \) can be expressed as the union of some member of \(\emptyset \) say \(A = \bigvee_{B_i \in \emptyset} B_i \). But \(A(x) > \alpha \). Therefore \((\bigvee_{B_i \in \emptyset} B_i)(x) > \alpha \). That is \(B_i(x) > \alpha \) for some \(B_i \in \emptyset \). Therefore \(B_i \in \emptyset_x \) and \(B_i \leq \bigvee_{B_i \in \emptyset} B_i = A \). That is, \(B_i \leq A \). Therefore \(\emptyset_x \) is an \(\alpha \) - local base for \(T \) at \(x \). But \(x \in X \) is arbitrary. Therefore every \(x \in X \) has a countable \(\alpha \) - local base. Hence \((X, T) \) is \(\alpha \) - C_{1} fts. The proof of \(\alpha^* \) - case is similar.

The following result gives an interrelation between \(\alpha \) - C_{11} and \(\alpha \) - separability.

92
2.10 Theorem: If a fts \((X, T)\) is an \(\alpha\)-\(C_{11}\) (resp. \(\alpha^*\)-\(C_{11}\)) then it is \(\alpha\)-separable (resp. \(\alpha^*\)-separable).

Proof: Let \((X, T)\) be an \(\alpha\)-\(C_{11}\) fts. Therefore \(T\) has a countable \(\alpha\)-base say \(B = \{B_i: i \in \mathbb{N}, B_i \in T, B_i \text{ is nonempty of order } \alpha\}\). Since \(B_i\) is nonempty of order \(\alpha\), there is a point in \(X\) say \(x_i\) such that \(B_i(x_i) > \alpha\). Then \(\{x_i: B_i(x_i) > \alpha, B_i \in B\}\) is a sequence of points in \(X\). Let \(A \in T\) and \(A \neq 0\). Since \(B\) is a \(\alpha\)-base, \(A\) can be expressed as a union of members of \(B\) say, \(A = \bigvee_{B_i \in B} B_i\). Let \(x_{i_0} \in \{x_i: i \in \mathbb{N}\}\). Then \(A(x_{i_0}) = (\bigvee_{B_i \in B} B_i)(x_{i_0}) > \alpha\) as \(B_i(x_{i_0}) > \alpha\). Thus for every \(A \in T\) with \(A \neq 0\), there exists a point \(x_{i_0}\) such that \(A(x_{i_0}) > \alpha\). It follows that \((X, T)\) is \(\alpha\)-separable.

A hereditary property for \(\alpha\)-separability is contained in the following.

2.11 Theorem: Every open crisp subspace of a \(\alpha\)-separable fts is \(\alpha\)-separable (resp. \(\alpha^*\)-separable).

Proof: Let \((X, T)\) be a \(\alpha\)-separable space and \(Y\) be an open crisp subspace of \((X, T)\). Since \((X, T)\) is \(\alpha\)-separable, there exists a countable sequence of points say \(S = \{x_i: i \in \mathbb{N}\}\) such that for each \(A \in T\) with \(A \neq 0\) there exists \(x_i\) such that \(A(x_i) > \alpha\).

Now let \(S_1 = \{x_n \in S: n \in \mathbb{N}\}\), which is a countable sequence of points in \(Y\). Let \(U\) be any open fuzzy set in \(Y\), with \(U \neq 0\). Then there is an open
fuzzy set \(V \) in \(T \) such that \(U = Y \wedge V \). Since \(X \) is \(\alpha \)-separable fts and \(Y \) is also open fuzzy set in \(X \), there exists \(x_{i_0} \in S \) such that \(V(x_{i_0}) > \alpha \). Also \(Y(x_{i_0}) = 1 > \alpha \).

For if \(Y(x_{i_0}) = 0 \) then \(U(x_{i_0}) = Y(x_{i_0}) \wedge V(x_{i_0}) = 0 \wedge V(x_{i_0}) = 0 \) which contradicts \(U \neq 0 \). Therefore \(U(x_{i_0}) = Y(x_{i_0}) \wedge V(x_{i_0}) > \alpha \). Thus for each open fuzzy set \(U \) in \(Y \) with \(U \neq 0 \), there exists a point \(x_{i_0} \) in \(S \) which is countable sequence of points in \(Y \) such that \(U(x_{i_0}) > \alpha \). It follows that \(Y \) is \(\alpha \)-separable fts.

A hereditary property for \(\alpha \)-C\(_{11} \) is confined in the following.

2.12 Theorem: Every crisp subspace of a \(\alpha \)-C\(_{11} \) fts is \(\alpha \)-C\(_{11} \).

Proof: Let \((X, T) \) be a \(\alpha \)-C\(_{11} \) fts and \(Y \) be a crisp subspace of \((X, T) \). Since \((X, T) \) is \(\alpha \)-C\(_{11} \) there exists a countable \(\alpha \)-base for \(T \), say \(\mathcal{B} = \{ B_i : i \in \mathbb{N} \text{ and } \text{B}_i \text{ is nonempty of order } \alpha \} \). Then \(\mathcal{B}_y = \{ B_i \wedge Y : i \in \mathbb{N} \} \) is a countable \(\alpha \)-base for crisp subspace \(Y \); For if \(U \) is an open fuzzy set in \(Y \) with \(U \neq 0 \) then \(U = Y \wedge G \), where \(G \) is open fuzzy set in \(X \). Now \(G \in T \) and \(\mathcal{B} \) is a \(\alpha \)-base for \(T \), it follows that \(G = \bigvee_{B_n \in \mathcal{B}} B_n \). Therefore \(U = \left(\bigvee_{B_n \in \mathcal{B}} B_n \wedge Y \right) = \bigvee_{B_n \in \mathcal{B}} (B_n \wedge Y) \), where \(B_n \wedge Y \in \mathcal{B}_y \) for each \(n \). Since \(B_i \) is nonempty of order \(\alpha \), there exists \(x \in X \) such that \(B_i(x) > \alpha \). Also \(Y(x) = 1 > \alpha \). Therefore \(Y \wedge B_i \) is nonempty of order \(\alpha \). Thus every open fuzzy set \(U \) with \(U \neq 0 \) in \(Y \), can be expressed as the union of members of \(\mathcal{B}_y \). Hence \(\mathcal{B}_y \) is a \(\alpha \)-base for \(Y \). Therefore \(Y \) is a \(\alpha \)-C\(_{11} \) fts.

Similar result can be proved for \(\alpha^* \)-case.
The next result shows that every \(\alpha - C_{11} \) fts is \(\alpha - \text{Lindelof} \).

2.13 Theorem: Let \(\alpha \in [0,1] \). If a fts \((X, T)\) is \(\alpha - C_{11} \) (resp. \(\alpha^* - C_{11} \)) then it is \(\alpha - \text{Lindelof} \) (resp. \(\alpha^* - \text{Lindelof} \)).

Proof: Let \((X, T)\) be a \(\alpha - C_{11} \) fts. Then \(T \) has a countable \(\alpha \)-base say \(\mathcal{B} = \{ B_i : B_i \in T, i \in \mathbb{N}, B_i \text{ is nonempty of order } \alpha \} \). To prove that \((X, T)\) is \(\alpha - \text{Lindelof} \) fts. Let \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \) be any open \(\alpha \)-shading of \(X \). Since \(\mathcal{B} \) is a \(\alpha \)-base for \(T \), each \(U_\lambda \) can be expressed as a union of member of \(\mathcal{B} \).

Let \(U_\lambda = \bigvee \{ B_{1, \lambda} \in \mathcal{B} : i = 1,2,3, \ldots, \lambda \} \). Let \(\mathcal{B}_n = \{ B_{i, \lambda} : \lambda \in \Lambda, \ i = 1,2,3, \ldots, \lambda_n \} \), clearly \(\mathcal{B}_n \) is a countable family of open fuzzy sets in \(X \). Also \(\mathcal{B}_n \) is an \(\alpha \)-shading of \(X \); Let \(x \in X \). Since \(\mathcal{U} \) is an \(\alpha \)-shading of \(X \), there exists some \(U_\mu \) in \(\mathcal{U} \) such that \(U_\mu(x) > \alpha \). Therefore \(\bigvee \{ B_{i, \lambda} : i = 1,2,3, \ldots, \lambda_n \}(x) > \alpha \).

Therefore \(B_{i', \lambda'}(x) > \alpha \) for some \(i', \lambda' \in \{ 1,2,3, \ldots, \lambda_n \} \) and \(B_{i', \lambda'} \in \mathcal{B}_n \). Therefore \(\mathcal{B}_n \) is an \(\alpha \)-shading of \(X \). Now each member of \(\mathcal{B}_n \) is less than or equal to some member of \(\mathcal{U} \); Let \(B_{1, \lambda} \in \mathcal{B}_n \) for some \(\lambda \in \Lambda \) and \(i \in \{ 1,2,3, \ldots, \lambda_n \} \). Then \(B_{1, \lambda} \leq \bigvee \{ B_{1, \lambda} : i = 1,2,3, \ldots, \lambda_n \} = U_\lambda \in \mathcal{U} \). Let \(\mathcal{J} = \{ U_\lambda : U_\lambda \geq B_{1, \lambda} \in \mathcal{B}_n \} \).

Since \(\mathcal{B}_n \) is countable, \(\mathcal{J} \) is a countable subfamily of \(\mathcal{U} \).

\(\mathcal{J} \) is an \(\alpha \)-shading of \(X \); Let \(x \in X \). Since \(\mathcal{B}_n \) is an \(\alpha \)-shading of \(X \), there exists a \(B_{1, \lambda} \) in \(\mathcal{B}_n \) such that \(B_{1, \lambda}(x) > \alpha \). But, for \(B_{1, \lambda} \in \mathcal{B}_n \) there exists \(U_\lambda \) in \(\mathcal{U} \) such that \(B_{1, \lambda} \leq U_\lambda \). Therefore \(U_\lambda(x) \geq B_{1, \lambda}(x) > \alpha \). That is, \(U_\lambda(x) > \alpha \). Also since
Therefore \mathcal{J} is an α-shading of X. Thus, every open α-shading \mathcal{U} of X has a countable α-subshading. Hence X is α-Lindelöf fts. The proof of α^*-case is similar.

2.14 Corollary: If (X, T) is a α-C_{11} (resp. α^*-C_{11}) fts then it is nearly α-Lindelöf (resp. nearly α^*-Lindelöf) fts.

3. α-PARALINDELÖF FTS

Paralindelöf spaces in general topology were studied by D. K. Burke [7&8], S. W. Davis et. al [11], Fleissner and Reed [15] and many others.

In the present section α-paralindelöf fts have been introduced and studied. It is proved that every α-Lindelöf fts is α-paralindelöf, every α-paracompact fts is α-paralindelöf, every α-C_{11} fts is α-paralindelöf, every closed crisp subspace of α-paralindelöf fts is α-paralindelöf and that α-paralindelöf property is invariant under F-continuous, F-open surjective functions.

The concept of α-locally countable collection of fuzzy sets is introduced in the following.

3.1 Definition: Let $\alpha \in [0, 1)$ (resp. $\alpha \in (0, 1]$). A family $(A_\lambda : \lambda \in \Lambda)$ of fuzzy sets in a fts X is said to be α-locally countable (resp. α^*-locally countable) in X if for each $x \in X$ there exists an open fuzzy set U in X such that $U(x) = 1$ and
$U \wedge A_{\lambda}$ is nonempty of order α (resp. α^*) for atmost countably many $\lambda \in \Lambda$. That is $\{ \lambda \in \Lambda : U \wedge A_{\lambda}$ is nonempty of order $\alpha \}$ is atmost countable.

3.2 Remark: 1) Every α - locally finite family (resp. α^*) of fuzzy sets is α - locally countable (resp. α^*).

2) Every countable family of fuzzy sets in a fts is α - locally countable.

Paralindelof property in fuzzy topology is introduced in the following.

3.3 Definition: Let $0 \leq \alpha < 1$ (resp. $0 < \alpha \leq 1$). A fts X is said to be α - paralindelof (resp. α^* - paralindelof) if each open α - shading (resp. α^* - shading) of X has a α - locally countable (resp. α^* - locally countable) open refinement.

The next result gives an interrelation between α - Lindelof α - paracompact and α - paralindelof property.

3.4 Theorem: Every α - Lindelof fts is α - paralindelof fts.

Proof: Let (X, T) be a α - Lindelof fts. To prove that (X, T) is α - paralindelof fts. Let \mathcal{U} be any open α - shading of X. Since X is α - Lindelof, \mathcal{U} has a countable α - subshading say \mathcal{V}. Then by Remark 3.2 (2), it follows that \mathcal{V} is α - locally countable family. Also \mathcal{V} is refinement of \mathcal{U}. Thus every open α - shading \mathcal{U} of X has a α - locally countable open refinement. Hence X is α - paralindelof fts.

Similar result can be proved for α^* - case.
3.5 **Theorem**: Every α-paracompact (resp. α^*-paracompact) ft is α-paralindelof (resp. α^*-paralindelof) ft.

Proof: The proof follows immediately by Remark 3.2 (1).

The next result shows that every α-C_{11} ft is α-paralindelof.

3.6 **Theorem**: Let $\alpha \in [0, 1)$ (resp. $\alpha \in (0, 1]$). If a ft (X, T) is α-C_{11} (resp. α^*-C_{11}) then it is α-paralindelof (resp. α^*-paralindelof) ft.

Proof: Let (X, T) be a α-C_{11} ft. Then it has a countable α-base say $\mathcal{B} = \{ B_i : B_i \in T, i \in \mathbb{N}, B_i \text{ is nonempty of order } \alpha \}$. To prove that (X, T) is α-paralindelof ft. Let $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}$ be any open α-shading of X. Since \mathcal{B} is a α-base for T, each member of \mathcal{U} can be expressed as union of member of \mathcal{B}.

Therefore $U_\lambda = \bigvee \{ B_i : i = 1, 2, 3, \ldots, \lambda_n \}$, where λ_n may be infinite. Let

$\mathcal{B}_n = \{ B_{i, \lambda} : \lambda \in \Lambda, i = 1, 2, 3, \ldots, \lambda_n \}$. Clearly \mathcal{B}_n is a countable family of open fuzzy sets in X. Also \mathcal{B}_n is α-shading of X. Let $x \in X$. Since \mathcal{U} is an α-shading of X, there exists U_λ in \mathcal{U} such that $U_\lambda(x) > \alpha$. Therefore $(\bigvee \{ B_{i, \lambda} : i = 1, 2, 3, \ldots, \lambda_n \})(x) > \alpha$. Therefore $B_{i', \lambda}(x) > \alpha$ for some $i' \in \{ 1, 2, 3, \ldots, \lambda_n \}$ and $B_{i', \lambda} \in \mathcal{B}_n$.

Now each member of \mathcal{B}_n is less than or equal to some member of \mathcal{U}; For, let $B_{i, \lambda} \in \mathcal{B}_n$ for some $\lambda \in \Lambda$ and $i \in \{ 1, 2, 3, \ldots, \lambda_n \}$. Then $B_{i, \lambda} \leq \bigvee \{ B_{i, \lambda} : i = 1, 2, 3, \ldots, \lambda_n \} = U_\lambda \in \mathcal{U}$.
Let $\mathcal{I} = \{ U_\lambda : B_{i, \lambda} \subseteq U_\lambda, B_{i, \lambda} \in \mathcal{B}_n \}$. Since \mathcal{B}_n is countable family, \mathcal{I} is also countable and \mathcal{I} is subfamily of \mathcal{U}. Also \mathcal{I} is an α-shading of X. Thus \mathcal{I} is a α-locally countable open refinement of \mathcal{U}. Hence (X, T) is α-paralindelof ft's.

The proof of α^*-case is analogous.

A hereditary property of α-paralindelof ft's is contained in the following.

3.7 Theorem: Every closed crisp subspace of a α-paralindelof ft's is α-paralindelof.

Proof: Let (X, T) be a α-paralindelof ft's and Y be a closed crisp subspace of (X, T). To prove that Y is α-paralindelof ft's. Let $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$ be an open α-shading of Y. For each $\lambda \in \Lambda$ there exists $U_\lambda \in T$ such that $V_\lambda = Y \setminus U_\lambda$. Then clearly $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \cup \{ 1 - Y \}$ is an open α-shading of X. Since X is α-paralindelof, \mathcal{U} has a α-locally countable open refinement say $\{ W_\gamma : \gamma \in \Gamma \}$.

Now the family $\{ Y \setminus W_\gamma : \gamma \in \Gamma \}$ is the required α-locally countable open refinement of \mathcal{V} for Y; For each $\gamma \in \Gamma$, $Y \setminus W_\gamma$ is an open fuzzy set in Y and if $y \in Y$ then $y \in X$. Since $\{ W_\gamma : \gamma \in \Gamma \}$ is α-locally countable, there exists an open fuzzy set N with $N(y) = 1$ and $\{ \gamma \in \Gamma : N \setminus W_\gamma \text{ is nonempty of order } \alpha \}$ is atmost countable. That is $\{ \gamma \in \Gamma : Y \setminus N \setminus W_\gamma \text{ is nonempty of order } \alpha \}$ is atmost countable. That is $\{ \gamma \in \Gamma : (N \setminus Y) \setminus (Y \setminus W_\gamma) \text{ is nonempty of order } \alpha \}$ is atmost

99
countable. Note that \(N(y) = 1 \) and \(Y(y) = 1 \). Therefore \(\langle N \land Y \rangle (y) = 1 \). Hence \(\{ Y \land W_y : y \in \Gamma \} \) is \(\alpha \) - locally countable family of fuzzy sets in \(Y \).

Finally, \(\{ Y \land W_y : y \in \Gamma \} \) is refinement of \(U \); Let \(Y \land W_y \in \{ Y \land W_y : y \in \Gamma \} \). Then for \(W_y \) there exists some \(U_y \) or \(1 - Y \) such that \(W_y \leq U_y \) or \(W_y \leq 1 - Y \), as \(\{ W_y : y \in \Gamma \} \) is refinement of \(U \). That is \(Y \land W_y \leq Y \land U_y \) or \(Y \land W_y \leq Y \land (1 - Y) \). That is \(Y \land W_y \leq V_y \) or \(Y \land W_y \leq 0 \). Thus for \(Y \land W_y \in \{ Y \land W_y : y \in \Gamma \} \) there exists \(V_y \) in \(U \) such that \(Y \land W_y \leq V_y \). It follows that \(\{ Y \land W_y : y \in \Gamma \} \) is a refinement of \(U \). Hence \(Y \) is \(\alpha \) - paralindelof fts.

Similar result can be proved for \(\alpha^* \) - case.

The next result gives an invariance under maps, of \(\alpha \) - paralindelof property.

3.8 Theorem : Let \(f : X \to Y \) be an \(F \)- continuous, \(F \)- open surjection. If \(X \) is \(\alpha \) - paralindelof fts then \(Y \) is \(\alpha \) - paralindelof fts.

Proof : Let \(f : X \to Y \) be an \(F \)- continuous, \(F \)- open surjection and \(X \) be a \(\alpha \) - paralindelof fts. To prove that \(Y \) is \(\alpha \) - paralindelof fts. Let \(U \) be an open \(\alpha \) - shading of \(Y \). Then clearly \(f^{-1}(U) = \{ f^{-1}(U) : U \in U \} \) is an open \(\alpha \) - shading of \(X \). Since \(X \) is \(\alpha \) - paralindelof, it follows that \(f^{-1}(U) \) has a \(\alpha \) - locally countable open refinement say \(\{ V_y : y \in \Gamma \} \). Then \(\{ f(V_y) : y \in \Gamma \} \) is the required \(\alpha \) - locally countable open refinement of \(U \); Since \(V_y \) is open in \(X \) and \(f \)
is an F-open map it follows that $f(V_y)$ is an open fuzzy set in Y. \{ f(V_y) : y \in \Gamma \} is \alpha$-locally countable in Y; Let $y \in Y$. Then there exists $x \in X$ such that $f(x) = y$. Now $x \in X$ and \{ $V_y : y \in \Gamma \} is \alpha$-locally countable family in X. Therefore there exists an open fuzzy set H in X such that $H(x) = 1$ and \{ $\gamma \in \Gamma : H \wedge V_y is nonempty of order α \} is atmost countable. That is \{ $\gamma \in \Gamma : f(H \wedge V_y) is nonempty of order α \} is atmost countable. Therefore \{ $\gamma \in \Gamma : f(H) \wedge f(V_y) is nonempty of order α \} is atmost countable. Thus each $y \in Y$, there exists an open fuzzy set $f(H)$ in X such that $[f(H)](y) = \sup \{ H(z) : z \in f^{-1}(y) \} = 1$ as $H(x) = 1$ and $f(x) = y$. Also the set \{ $\gamma \in \Gamma : f(H) \wedge f(V_y) is nonempty of order α \} is atmost countable. Therefore the family \{ $f(V_y) : y \in \Gamma \} is \alpha$-locally countable in Y.

Finally \{ $f(V_y) : y \in \Gamma \} is refinement of \mathcal{U}; Let $\gamma \in \Gamma$. Since \{ $V_y : y \in \Gamma \} is refinement of $f(\mathcal{U})$, for $V_y, V' \in \{ V_y : y \in \Gamma \}$, there exists $f^{-1}(U_\delta)$ in $f^{-1}(\mathcal{U})$ such that $V_y \leq f^{-1}(U_\delta)$ which implies that $f(V_y) \leq f[f^{-1}(U_\delta)] = U_\delta$, as f is onto. Thus each open α-shading \mathcal{U} of Y has an α-locally countable open refinement. Hence Y is α-paralindelof fts.
4. WEAKLY α - PARALINDELOF FTS

In this section, a weaker form of α - paralindelof property in fuzzy topology is introduced and studied, using the concept of α - point countable family of fuzzy sets. It is proved that a closed crisp subspace of weakly α - paralindelof fts is weakly α - paralindelof and that weakly α - paralindelof property is invariant under F - continuous, F - open surjections.

The concept of α - point countable collection of fuzzy sets is introduced in the following.

4.1 Definition : Let $\alpha \in [0,1)$ (resp. $\alpha \in (0,1]$). A family $\{ A_{\lambda} : \lambda \in \Lambda \}$ of fuzzy sets in a fuzzy topological space (X, T) is said to be α - point countable (resp. α^* - point countable) if for each $x \in X$, $A_{\lambda}(x) > \alpha$ (resp. $A_{\lambda}(x) \geq \alpha$) for at most countably many $\lambda \in \Lambda$.

It is clear that every α - point finite family is α - point countable family and every α - locally finite family is α - point finite and hence α - point countable.

The class of weakly α - paralindelof fts is introduced in the following.

4.2 Definition : A fts X is said to be a weakly α - paralindelof (resp. weakly α^* - paralindelof) if each open α - shading (resp. α^* - shading) of X has a α - point countable (resp. α^* - point countable) open refinement.
One can easily verify that every α-paralindelof fts is weakly α-paralindelof and that every weakly α-paracompact fts is weakly α-paralindelof fts.

4.3 **Theorem**: Every $\alpha - C_{11}$ (resp. $\alpha^* - C_{11}$) fts is weakly α-paralindelof (resp. α^*-paralindelof) fts.

Proof: The proof is analogous to that of Theorem 3.6.

A hereditary property of weakly α-paralindelof fts is contained in the following.

4.4 **Theorem**: Every closed crisp subspace of a weakly α-paralindelof fts is weakly α-paralindelof.

Proof: Let (X, T) be a weakly α-paralindelof fts and Y be a closed crisp subspace of X. To prove that Y is weakly α-paralindelof fts. Let $\Psi = \{V_\lambda : \lambda \in \Lambda\}$ be any open α-shading of Y. Then for each $\lambda \in \Lambda$ there is an open fuzzy set U_λ in X such that $V_\lambda = Y \cap U_\lambda$. Then it can be verified that $\mathcal{U} = \{U_\lambda : \lambda \in \Lambda\} \cup \{1 - Y\}$ is an open α-shading of X. Since X is weakly α-paralindelof, it follows that \mathcal{U} has a α-point countable open refinement say $\{W_\gamma : \gamma \in \Gamma\}$. Then the family $\mathcal{V} = \{Y \cap W_\gamma : \gamma \in \Gamma\}$ is the required α-point countable open refinement of Ψ for Y; Consider for each γ, $Y \cap W_\gamma$ is an open fuzzy set in Y and $\{Y \cap W_\gamma : \gamma \in \Gamma\}$ is refinement of Ψ.

103
Further, let \(y \in Y \), then \(y \in X \). Since \(\{ W_\gamma : \gamma \in \Gamma \} \) is \(\alpha \) - point countable in \(X \), \(W_\gamma(y) > \alpha \) for atmost countably many \(\gamma \in \Gamma \). That is \(\{ \gamma \in \Gamma : W_\gamma(y) > \alpha \} \) is atmost countable. That is \(\{ \gamma \in \Gamma : (Y \wedge W_\gamma)(y) > \alpha \} \) is atmost countable family for \(Y \). Thus every open \(\alpha \) - shading \(\mathcal{V} \) of \(Y \), has a \(\alpha \) - point countable open refinement \(\mathcal{V}^1 \). Hence \(Y \) is weakly \(\alpha \) - paralindelf tfs.

The next result shows that the class of weakly \(\alpha \) - paralindelf tfs is invariant under \(F \) - continuous, \(F \) - open surjections.

4.5 Theorem : Let \(f : X \to Y \) be a \(F \) - continuous, \(F \) - open surjection. If \(X \) is weakly \(\alpha \) - paralindelf tfs then \(Y \) is also weakly \(\alpha \) - paralindelf tfs.

Proof: Let \(f : X \to Y \) be a \(F \) - continuous, \(F \) - open surjection and \(X \) is weakly \(\alpha \) - paralindelf tfs. To prove that \(Y \) is weakly \(\alpha \) - paralindelf tfs. Let \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \) be any open \(\alpha \) - shading family of \(Y \). Since \(f \) is \(F \) - continuous, \(f^{-1}(\mathcal{U}) = \{ f^{-1}(U_\lambda) : \lambda \in \Lambda \} \) is an open \(\alpha \) - shading of \(X \). Since \(X \) is weakly \(\alpha \) - paralindelf, it follows that \(f^{-1}(\mathcal{U}) \) has a \(\alpha \) - point countable open refinement say \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \} \). Then \(f^{-1}(\mathcal{V}) = \{ f(V_\lambda) : \lambda \in \Lambda \} \) is the required \(\alpha \) - point countable open refinement of \(\mathcal{U} \) for \(Y \); For each \(\lambda \), \(f(V_\lambda) \) is open in \(Y \), as \(f \) is \(F \) - open and \(V_\lambda \) is open in \(X \). Clearly, \(\mathcal{V} \) is a refinement of \(\mathcal{U} \).

Finally, let \(y \in Y \) then \(y = f(x) \) for some \(x \in X \). Since \(\mathcal{V} \) is \(\alpha \) - point countable in \(X \), for \(x \in X \), \(V_\lambda(x) > \alpha \) for atmost countably many \(\lambda \in \Lambda \). That is
\{ \lambda \in \Lambda : V_\lambda(x) > \alpha \} \text{ is atmost countable, which implies} \\
\{ \lambda \in \Lambda : \sup_{z \in f^{-1}(y)} \{ V_\lambda(z) \} > \alpha \} \text{ is atmost countable. That is} \\
\{ \lambda \in \Lambda : f(V_\lambda)(y) > \alpha \} \text{ is atmost countable. It follows that} \{ f(V_\lambda) : \lambda \in \Lambda \} \text{ is} \\
\alpha \cdot \text{-point countable family in} Y. \text{ Hence} Y \text{ is weakly} \alpha \cdot \text{-paralindelof fts.} \\

Similar result can be proved for} \alpha^* \text{-case.} \\

5. STRONGLY \alpha \cdot \text{PARALINDELOF FTS} \\

In this section, a stronger form of \alpha \cdot \text{-paralindelof property in fuzzy topology}

is introduced and studied using the concept of \alpha \cdot \text{-star countable collection of fuzzy}

sets. Among other results, it is proved that a closed crisp subspace of a strongly \alpha \cdot \text{-paralindelof fts is strongly} \alpha \cdot \text{-paralindelof and that such class of fts is invariant}

under F \cdot \text{-continuous, F \cdot open surjections.}

The concept of \alpha \cdot \text{-star countable collection of fuzzy sets is introduced in the}

following.

5.1 Definition: Let \(0 < \alpha < 1 \) (resp. \(0 < \alpha \leq 1 \)). A family \(\{ A_\lambda : \lambda \in \Lambda \} \) of fuzzy

sets in a fts \(X \) is said to be \(\alpha \cdot \text{-star countable (resp.} \alpha^* \cdot \text{-star countable) in} X \) if for each \(\lambda_0 \in \Lambda \) the set \(A_{\lambda_0} \land A_\lambda \) is nonempty of order \(\alpha \) (resp. \(\alpha^* \)) for atmost
countably many \(\lambda \in \Lambda \). That is \(\{ \lambda \in \Lambda : A_{\lambda_0} \land A_\lambda \text{ is nonempty of order} \alpha \) (resp. \(\alpha^* \)) \} \text{ is atmost countable.}

105
5.2 Remark: The following results can easily be verified.

1) Every countable family of fuzzy sets is α-star countable.

2) Every α-star finite family of fuzzy sets is α-star countable family.

3) Every α-star countable family of fuzzy sets is α-point countable.

The class of strongly α-paralindelof fts is introduced in the following.

5.3 Definition: Let $0 < \alpha < 1$ (resp. $0 < \alpha \leq 1$). A fts (X, \mathcal{T}) is said to be strongly α-paralindelof fts (resp. strongly α^*-paralindelof) if each open α-shading (resp. α^*-shading) of X has a α-star countable (resp. α^*-star countable) open refinement.

5.4 Theorem: Every strongly α-paracompact fts is strongly α-paralindelof.

Proof: Proof follows from Remark 5.2 (2).

5.5 Theorem: Every strongly α-paralindelof fts is weakly α-paralindelof.

Proof: Proof follows from Remark 5.2 (3).

The next result gives a hereditary property of strongly α-paralindelof fts.

5.6 Theorem: Every closed crisp subspace of a strongly α-paralindelof fts is strongly α-paralindelof.

Proof: Let Y be a closed crisp subspace of a strongly α-paralindelof fts. Let $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$ be any open α-shading of Y. Then for each $\lambda \in \Lambda$ there is an open fuzzy set U_λ in X such that $V_\lambda = Y \cup U_\lambda$. Then the family $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \cup \{ 1 - Y \}$ is an open α-shading of X. Since X is strongly...
\(\alpha\)-paralindelof fts, \(\mathcal{U}\) has a \(\alpha\)-star countable open refinement say \(\{ W_\gamma : \gamma \in \Gamma \}\).

Now the family \(\mathcal{V} = \{ Y \land W_\gamma : \gamma \in \Gamma \}\) is the required \(\alpha\)-star countable open refinement of \(\mathcal{V}\) for \(Y\); For each \(\gamma \in \Gamma\), \(Y \land W_\gamma\) is open fuzzy set in \(Y\), also \(\mathcal{V}\) is refinement of \(\mathcal{V}\).

Further \(\mathcal{V}\) is \(\alpha\)-star countable in \(Y\); Since \(\{ W_\gamma : \gamma \in \Gamma \}\) is \(\alpha\)-star countable in \(X\), for each \(\gamma_0 \in \Gamma\) the set \(W_{r_{\gamma_0}} \land W_\gamma\) is nonempty of order \(\alpha\) for atmost countably many \(\gamma \in \Gamma\). That is \(\{ \gamma \in \Gamma : W_{r_{\gamma_0}} \land W_\gamma\) is nonempty of order \(\alpha\}\) is atmost countable. That is \(\{ \gamma \in \Gamma : (Y \land W_{r_{\gamma_0}}) \land (Y \land W_\gamma)\) is nonempty of order \(\alpha\}\) is atmost countable. That is \(\{ \gamma \in \Gamma : (Y \land W_{r_{\gamma_0}}) \land (Y \land W_\gamma)\) is nonempty of order \(\alpha\}\) is atmost countable. It follows that \(\{ Y \land W_\gamma : \gamma \in \Gamma \}\) is \(\alpha\)-star countable family of fuzzy sets in \(Y\). Thus every open \(\alpha\)-shading \(\mathcal{V}\) of \(Y\) has a \(\alpha\)-star countable open refinement \(\mathcal{V}\). Hence \(Y\) is strongly \(\alpha\)-paralindelof fts.

Now the invariance under maps, of strongly \(\alpha\)-paralindelof fts is given in the following result.

5.7 Theorem: Let \(f : X \rightarrow Y\) be a \(F\)-continuous, \(F\)-open surjection. If \(X\) is strongly \(\alpha\)-paralindelof fts then \(Y\) is also strongly \(\alpha\)-paralindelof fts.

proof: Let \(f : X \rightarrow Y\) be a \(F\)-continuous, \(F\)-open surjection. Let \(X\) be a strongly \(\alpha\)-paralindelof fts. To prove that \(Y\) is strongly \(\alpha\)-paralindelof fts. Let
\[U = \{ U_\lambda : \lambda \in \Lambda \} \] be any open \(\alpha \)-shading of \(Y \). Then clearly
\[f^{-1}(U) = \{ f^{-1}(U_\lambda) : \lambda \in \Lambda \} \] is an open \(\alpha \)-shading of \(X \). Since \(X \) is strongly
\(\alpha \)-paralindelof, \(f^{-1}(U) \) has a \(\alpha \)-star countable open refinement say
\[V = \{ V_\lambda : \lambda \in \Lambda \}. \] Then \(V = \{ f(V_\lambda) : \lambda \in \Lambda \} \) is the required \(\alpha \)-star countable
open refinement of \(U \); For each \(\lambda \in \Lambda \), \(f(V_\lambda) \) is open fuzzy set in \(Y \). It can be
verified that \(\{ f(V_\lambda) : \lambda \in \Lambda \} \) is refinement of \(U \). Further, since \(V \) is \(\alpha \)-star countable it follows that for each \(\lambda_0 \in \Lambda \) the set
\[\{ \lambda \in \Lambda : V_{\lambda_0} \land V_\lambda \text{ is nonempty of order } \alpha \} \] is almost countable. This implies \(\{ \lambda \in \Lambda : f(V_{\lambda_0} \land V_\lambda) \text{ is nonempty of order } \alpha \} \) is almost countable. That is
\[\{ \lambda \in \Lambda : f(V_{\lambda_0}) \land f(V_\lambda) \text{ is nonempty of order } \alpha \} \] is almost countable. It follows that \(U = \{ f(V_\lambda) : \lambda \in \Lambda \} \) is \(\alpha \)-star countable. Hence \(Y \) is strongly \(\alpha \)-paralindelof fts.

6. NEARLY \(\alpha \)-PARALINDELOF FTS

The class of nearly \(\alpha \)-paralindelof fts is introduced and studied in this
section. It is shown that the concept of nearly \(\alpha \)-paralindelof is a weaker form of
\(\alpha \)-compactness, nearly \(\alpha \)-compactness, \(\alpha \)-paracompactness, nearly
\(\alpha \)-paracompactness and \(\alpha \)-paralindelof property. Two characterizations and a
invariance under maps, of such class of fts have also been obtained.
The concept of nearly \(\alpha \)-paralidelof property in fuzzy topology is introduced in the following.

6.1 Definition: Let \(0 \leq \alpha < 1 \) (resp. \(0 < \alpha \leq 1 \)). A fts \((X, T)\) is called nearly \(\alpha \)-paralindelof (resp. nearly \(\alpha^* \)-paralindelof) if every fuzzy regular open \(\alpha \)-shading (resp. \(\alpha^* \)-shading) of \(X \) has a \(\alpha \)-locally countable (resp. \(\alpha^* \)-locally countable) open \(\alpha \)-refinement.

The next five results give interrelationships.

6.2 Theorem: Every nearly \(\alpha \)-paracompact fts is nearly \(\alpha \)-paralindelof fts.

Proof: Let \((X, T)\) be a nearly \(\alpha \)-paracompact fts. To prove that \((X, T)\) is nearly \(\alpha \)-paralindelof fts. Let \(U \) be any fuzzy regular open \(\alpha \)-shading of \(X \). Since \(X \) is nearly \(\alpha \)-paracompact, \(U \) has a \(\alpha \)-locally finite open refinement say \(\mathcal{V} \). We know that every finite family is countable, therefore \(\mathcal{V} \) is the required \(\alpha \)-locally countable open refinement of \(U \). Hence \(X \) is nearly \(\alpha \)-paralindelof fts.

6.3 Theorem: Every \(\alpha \)-paracompact fts is nearly \(\alpha \)-paralindelof fts.

Proof: The proof follows from Theorems 5.3 of Ch.III and 6.2.

6.4 Theorem: Every \(\alpha \)-compact fts is nearly \(\alpha \)-paralindelof fts.

Proof: The proof follows from Theorems 5.4 of Ch.III and 6.2.

6.5 Theorem: Every nearly \(\alpha \)-compact fts is nearly \(\alpha \)-paralindelof fts.

Proof: The proof follows from Theorems 5.5 of Ch.III and 6.2.

6.6 Theorem: Every \(\alpha \)-paralindelof fts is nearly \(\alpha \)-paralindelof fts.
Proof: Let \((X, T)\) be a \(\alpha\)-paralindelof fts. To prove that \((X, T)\) is nearly \(\alpha\)-paralindelof fts. Let \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}\) be any fuzzy regular open \(\alpha\)-shading of \(X\), then \(\mathcal{U}\) is also a fuzzy open \(\alpha\)-shading of \(X\). Since \(X\) is \(\alpha\)-paralindelof, it follows that \(\mathcal{U}\) has a \(\alpha\)-locally countable open refinement say \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}\). Then \(\mathcal{V}^* = \{ \overline{V_\lambda} : \lambda \in \Lambda \}\) is the required \(\alpha\)-locally countable open refinement of \(\mathcal{U}\); Let \(x \in X\). Since \(\mathcal{V}\) is \(\alpha\)-locally countable, there exists an open fuzzy set \(N\) in \(X\) with \(N(x) = 1\) such that \(N \wedge V_\lambda\) is nonempty of order \(\alpha\) for atmost countably many \(\lambda \in \Lambda\). That is \(\{ \lambda \in \Lambda : N \wedge V_\lambda\) is nonempty of order \(\alpha\}\) is atmost countable. Now \(N \wedge V_\lambda\) is nonempty of order \(\alpha\) implies there exists some \(x_0 \in X\) such that \((N \wedge V_\lambda)(x_0) \geq \alpha\), and \(V_\lambda \supseteq N \wedge V_\lambda\) is always true. That is \(\overline{V_\lambda} \geq N \wedge V_\lambda\).

Also \(N \supseteq N \wedge V_\lambda\). Therefore it follows that \(N \wedge \overline{V_\lambda} \geq (N \wedge V_\lambda) \wedge (N \wedge V_\lambda) = N \wedge V_\lambda\) as \(N \wedge V_\lambda \leq N \wedge \overline{V_\lambda}\). But for some \(x_0 \in X\), \((N \wedge V_\lambda)(x_0) > \alpha\) for countably many \(\lambda \in \Lambda\). Therefore \((N \wedge \overline{V_\lambda})(x_0) > \alpha\) for atmost countably many \(\lambda \in \Lambda\). It follows that \(\mathcal{V}\) is \(\alpha\)-locally countable family. Also it can be show that \(\mathcal{V}\) is refinement of \(\mathcal{U}\). Hence \(X\) is nearly \(\alpha\)-paralindelof fts.

Similar result can be proved for \(\alpha^*\)-case.

6.7 Remark: The following diagram shows the interrelationships.
The following result contains a characterization of nearly α-paralindelof fts.

6.8 Theorem: A fts X is nearly α-paralindelof if and only if every fuzzy regular open α-shading of X has an α-locally countable, fuzzy regular open refinement.

Proof: Let (X, T) be a nearly α-paralindelof fts. Let $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}$ be any fuzzy regular open α-shading of X. Since X is nearly α-paralindelof, it follows that \mathcal{U} has an α-locally countable open refinement say $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$. Then $\mathcal{V}' = \{ V_\lambda^0 : \lambda \in \Lambda \}$ is the required fuzzy regular open, α-locally countable open refinement of \mathcal{U}. Converse is obvious, because every fuzzy regular open set is fuzzy open set. Hence the theorem.

The next result gives an invariance under maps, of the class of nearly α-paralindelof fts.

6.9 Theorem: Let $f : X \to Y$ be a fuzzy almost continuous, fuzzy almost open surjection. If X is nearly α-paralindelof fts then Y is also nearly α-paralindelof fts.

Proof: The proof of this theorem is similar to that of Theorem 5.8 of Ch.III.
The following result gives another characterization in terms of semiregularization fts.

6.10 Theorem: A fts is nearly α-paralindelof iff its semiregular fts is α-paralindelof fts.

Proof: The proof of this theorem is similar to that of Theorem 5.9 of Ch.III.

7. NEARLY WEAKLY α-PARALINDELOF FTS

In this section, the class of nearly weakly α-paralindelof fts is introduced and studied. It is shown that this class of fts generalizes the classes of α-compactness, nearly α-compactness, α-paracompactness, nearly α-paracompactness, weakly α-paracompactness and nearly weakly α-paracompactness. A characterization and an invariance under maps, of such a class of fts are also obtained.

The concept of nearly weakly α-paralindelof property in fuzzy topology is introduced in the following.

7.1 Definition: Let $\alpha \in [0,1)$ (resp. $\alpha \in (0,1]$). A fts (X,T) is said to be nearly weakly α-paralindelof (resp. nearly weakly α^*-paralindelof) fts if every fuzzy regular open α-shading (resp. α^*-shading) of X has a α-point countable (resp. α^*-point countable) open refinement.
The following result shows that nearly weakly α-paralindelof property generalizes nearly weakly α-paracompactness.

7.2 Theorem: Every nearly weakly α-paracompact fts is nearly weakly α-paralindelof fts.

Proof: Let (X, T) be a nearly weakly α-paracompact fts. To prove that (X, T) is nearly weakly α-paralindelof fts. Let U be any fuzzy regular open α-shading of X. Since X is nearly weakly α-paracompact, U has a α-point finite open refinement say V. We Know that every finite family is countable so V is the required α-point countable open refinement of U. Hence (X, T) is nearly weakly α-paralindelof fts.

The next result says that nearly weakly α-paralindelof property generalizes weakly α-paracompactness.

7.3 Theorem: Every weakly α-paracompact fts is nearly weakly α-paralindelof fts.

Proof: The proof follows by Theorems 6.3 of Ch.III and 7.2.

The next four results also give the various interrelations.

7.4 Theorem: Every α-paracompact fts is nearly weakly α-paralindelof fts.

Proof: The proof follows by Theorems 6.2 of Ch.III and 7.2.

7.5 Theorem: Every nearly α-paracompact fts is nearly weakly α-paralindelof fts.

113
Proof: The proof follows by Theorems 6.4 of Ch.III and 7.2.

7.6 **Theorem**: Every α-compact fts is nearly weakly α-paralindelof fts.

Proof: The proof follows by Theorems 6.6 of Ch.III and 7.2.

7.7 **Theorem**: Every nearly α-compact fts is nearly weakly α-paralindelof fts.

Proof: The proof follows by Theorems 6.5 of Ch.III and 7.2.

7.8 **Remark**: The following diagram shows the interrelationships.

```
    $\alpha$-COMPACT
        \downarrow
    NEARLY $\alpha$-COMPACT
        \downarrow
    $\alpha$-PARACOMPACT
        \downarrow
    NEARLY $\alpha$-PARACOMPACT
      \downarrow
    WEAKLY $\alpha$-PARACOMPACT
      \downarrow
    NEARLY WEAKLY $\alpha$ PARACOMPACT
```

The next result is a characterization of such fts.

7.9 **Theorem**: A fts X is nearly weakly α-paralindelof iff every fuzzy regular open α-shading of X has a α-point countable, fuzzy regular open α-refinement.

Proof: The proof is analogous to that of Theorem 6.8 of Ch.III.

The invariance under maps of nearly weakly α-paralindelof property is contained in the following.
7.10 Theorem: Let $f: X \to Y$ be a fuzzy almost continuous, fuzzy almost open surjection mapping. If X is nearly weakly α-paralindelof fts, then Y is also nearly weakly α-paralindelof fts.

Proof: The Proof is analogous to that of Theorem 6.9 of Ch.III.

8. NEARLY STRONGLY α-PARALINDELOF FTS

In this section a new class of fts called nearly strongly α-paralindelof fts is introduced and studied. It is shown that such a class is a weaker form of strongly α-paracompactness, nearly strongly α-paracompactness and strongly α-paralidelof property.

The new class is introduced in the following.

8.1 Definition: Let $0 < \alpha < 1$ (resp. $0 < \alpha \leq 1$). A fts (X, T) is said to be nearly strongly α-paralindelof (resp. nearly strongly α^*-paralindelof) if every fuzzy regular open α-shading (resp. α^*-shading) of X has a α-star (resp. α^*-star) countable open refinement.

The next result gives an interrelationship.

8.2 Theorem: Every nearly strongly α-paracompact fts is nearly strongly α-paralindelof fts.

Proof: Let (X, T) be a nearly strongly α-paracompact fts. To prove that (X, T) is nearly strongly α-paralindelof fts. Let U be any fuzzy regular open α shading of
X. Since X is nearly strongly α-paracompact, it follows that \mathcal{U} has a α-star finite open refinement say \mathcal{V}. But we know that every finite family is countable. Therefore \mathcal{V} is the required α-star countable open refinement of \mathcal{U}. Hence X is nearly strongly α-paralindelof fts.

Another interrelationship is given in the following.

8.3 Theorem: Every strongly α-paracompact fts is nearly strongly α-paralindelof fts.

Proof: The proof follows by Theorems 6.11 of Ch. III and 8.2.

Yet another interrelationship is given in the following.

8.4 Theorem: Every strongly α-paralindelof fts is nearly strongly α-paralindelof fts.

Proof: Let (X, T) be a strongly α-Paralindelof fts. To prove that (X, T) is nearly strongly α-paralindelof fts. Let $\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \}$ be any fuzzy regular open α-shading of X. Then \mathcal{U} is fuzzy open α-shading of X. Since X is strongly α-paralindelof, \mathcal{U} has a α-star countable open refinement say $\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \}$.

Then $\mathcal{V}' = \{ V_\lambda^\alpha : \lambda \in \Lambda \}$ is the required α-star countable open refinement of \mathcal{U}.

Hence (X, T) is nearly strongly α-paralindelof fts.

8.5 Remark: The following diagram shows the interrelationships.
STRONGLY α - PARACOMPACT

NEARLY STRONGLY α-PARACOMPACT \rightarrow \{NEARLY STRONGLY α - PARALINDELOF

STRONGLY α - PARALINDELOF

8.6 Theorem: Every α - regular nearly strongly α - paralindelof fts is strongly α - paralindelof fts.

Proof: The proof is similar to that of Theorem 6.12 of Ch.III.

The following result gives an invariance under maps, of such a class of fts.

8.7 Theorem: Let $f: X \rightarrow Y$ be a fuzzy almost continuous, fuzzy almost open surjection mapping. If X is nearly strongly α - paralindelof fts then Y is so.

Proof: The proof is analogous to that of Theorem 6.13 of Ch.III.