CHAPTER 5

(\tau_i, \tau_j) -SEMI WEAKLY g*- CLOSED SETS

IN BITOPOLITICAL SPACES

5.1 INTRODUCTION

In this chapter \((\tau_i, \tau_j)\)-semi weakly \(g^*\)- closed sets, \((\tau_i, \tau_j)\)-semi weakly open sets, \((\tau_i, \tau_j)\)-Quasi semi weakly \(g^*\)-closed sets, \((\tau_i, \tau_j)\)-Quasi semi weakly open sets, \((\tau_i, \tau_j)\)-semi weakly \(g^*\)- continuous functions, \((\tau_i, \tau_j)\)-semi weakly \(g^*\)- strongly continuous functions and \((\tau_i, \tau_j)\)-semi weakly \(g^*\)- irresolute functions are introduced and some of their properties are investigated.

5.2 (\tau_i, \tau_j) - SEMI WEAKLY g*-CLOSED SETS

In this section the concept of \((\tau_i, \tau_j)\) semi weakly \(g^*\)- closed sets in a bitopological space are defined and study some of their properties.
Definition 5.2.1: Let \((\tau_i, \tau_j) \in \{1,2\}\) be fixed integers. In a bitopological space \((X, \tau_i, \tau_j)\), a subset \(A \subseteq X\) is said to be \((\tau_i, \tau_j)\)-semi weakly g*-closed (briefly \((\tau_i, \tau_j)\)-swg*-closed), if \(\tau_j\)-gcl \((A) \subseteq U\) whenever \(A \subseteq U\) and \(U \in \tau_i\)-semi open.

Definition 5.2.2: The set of all \(\tau_j\)-swg*-closed sets in \(X\) is denoted by \(\tau_j\)-SWG*C \((X, \tau_i, \tau_j)\) and the set of all \(\tau_j\)-swg*-open set in \(X\) is denote by \(\tau_j\)-SWG*O \((X, \tau_i, \tau_j)\).

Theorem 5.2.3: Let \(A\) be \((\tau_i, \tau_j)\)-swg*-closed set in a bitopological space \((X, \tau_i, \tau_j)\). Then \(\tau_j\)-gcl \((A) \subseteq A\) contain no non-empty \(\tau_i\)-semi closed set in \((X, \tau_i, \tau_j)\).

Proof: Suppose that \(F\) is a \(\tau_i\)-semi closed subset of \(\tau_j\)-gcl \((A) \subseteq A\). This implies \(F \subseteq \tau_j\)-gcl \((A)\) and \(F \subseteq A^c\). Since \(F^c\) is \(\tau_i\)-semi open set and \(A\) is \((\tau_i, \tau_j)\)-swg*-closed set, \(\tau_j\)-gcl \((A) \subseteq F^c\). Therefore \(F \subseteq \tau_j\)-gcl \((A) \cap (\tau_j\)-gcl \((A)\))^c = \phi\). Hence \(\tau_j\)-gcl \((A) \subseteq A\) contain no non-empty \(\tau_i\)-semi closed set in \((X, \tau_i, \tau_j)\).

Corollary 5.2.4: If subset \(A\) in bitopological space \((X, \tau_i, \tau_j)\) is \((\tau_i, \tau_j)\)-swg*-closed set then \(\tau_j\)-gcl \((A) \subseteq A = \phi\).

Proof: Assume that \(A\) is \((\tau_i, \tau_j)\)-swg*-closed set. Since \(\tau_j\)-gcl \((A) = A\) therefore \(\tau_j\)-gcl \((A) \subseteq A = \phi\).

Theorem 5.2.5: Suppose \(B \subseteq A \subseteq X\), \(B\) is \((\tau_i, \tau_j)\)-swg*-closed set relative to \(A\) and that \(A\) is \((\tau_i, \tau_j)\)-swg*-closed subset of \((X, \tau_i, \tau_j)\). Then \(B\) is \((\tau_i, \tau_j)\)-swg*-closed relative to \(X\).
Proof: Let $B \subseteq U$ and U is τ_i-semi open in X. Then $B \subseteq A \cap U$ and hence $\tau_j\text{-gcl}_A(B) \subseteq A \cap U$. It follows that $A \cap \tau_j\text{-}\text{gcl}(B) \subseteq A \cap U$ and $A \subseteq U \cup (\tau_j\text{-}\text{gcl}(B))^c$. Since A is (τ_i, τ_j)-swg*-closed in X, $\tau_j\text{-}\text{gcl}(A) \subseteq U \cup (\tau_j\text{-}\text{gcl}(B))^c$. Therefore $(\tau_j\text{-}\text{gcl}(B)) \subseteq \tau_j\text{-}\text{gcl}(A) \subseteq U \cup (\tau_j\text{-}\text{gcl}(B))^c$ and $\tau_j\text{-}\text{gcl}(B) \subseteq U$. Then B is (τ_i, τ_j)-swg*-closed set relative to X.

Theorem 5.2.6: Let $A \subseteq Y \subseteq X$ and suppose that A is (τ_i, τ_j)-swg*-closed in X. Then A is (τ_i, τ_j)-swg*-closed relative to Y.

Proof: Let $A \subseteq Y \cap U$ and U is τ_i-semi open in Y. Then $A \subseteq U$ and hence $\tau_j\text{-}\text{gcl}(A) \subseteq U$. It follows that $Y \cap \tau_j\text{-}\text{gcl}(A) \subseteq Y \cap U$. Then A is (τ_i, τ_j)-swg*-closed relative to Y.

Theorem 5.2.7: Every τ_j-closed set in bitopological space X is a (τ_i, τ_j)-swg*-closed in X.

Proof: Assume A is τ_j-closed in X. Let U be a τ_i-semi open set in X. Such that $A \subseteq U$, and $A \subseteq (\tau_j\text{-}\text{cl}(\tau_i\text{-}\text{int}(A))) \subseteq U$. Implies $A \subseteq (\tau_j\text{-}\text{cl}(\tau_i\text{-}\text{int}(A))) \subseteq \tau_j\text{-}\text{cl}(A) \subseteq U$ and U is τ_i-semi open. Thus $A \subseteq \tau_j\text{-}\text{gcl}(A) \subseteq U$. Therefore A is (τ_i, τ_j)-semi weakly g*-closed set.

Remarks 5.2.8: The converse of the above theorem need not be true as seen from the following example.

Example 5.2.9: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, c\}\}$ and $\tau_j = \{X, \phi, \{c\}, \{b, c\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{b, c\}$ is (τ_i, τ_j)-swg*-closed which is not τ_j-closed set.
Remarks 5.2.10: \((\tau_i, \tau_j)\) - g - closed set and \((\tau_i, \tau_j)\)-wg*-closed set are independent to each other as seen from the following examples.

Example 5.2.11: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a\}\}\) and \(\tau_j = \{X, \phi, \{a, b\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\) the subset \(\{b\}\) is \((\tau_i, \tau_j)\)-g - closed set which is not \((\tau_i, \tau_j)\)-swg*-closed set.

Example 5.2.12: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a\}\}\) and \(\tau_j = \{X, \phi, \{b\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\) the subset \(\{a\}\) is \((\tau_i, \tau_j)\) - swg*-closed set which is not \((\tau_i, \tau_j)\)-g - closed set.

Remark 5.2.13: \((\tau_i, \tau_j)\)- swg*-closed set and \((\tau_i, \tau_j)\)- semi closed set are independent to each other as seen from the following examples.

Example 5.2.14: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a, b\}\}\) and \(\tau_j = \{X, \phi, \{a\}, \{a, b\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\), the subset \(\{b\}\) is \((\tau_i, \tau_j)\) - semi closed set which is not \((\tau_i, \tau_j)\)-swg*-closed set.

Example 5.2.15: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{b, c\}\}\) and \(\tau_j = \{X, \phi, \{b\}, \{b, c\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\), the subset \(\{a, b\}\) is \((\tau_i, \tau_j)\) - swg*-closed set which is not \((\tau_i, \tau_j)\)-semi-closed set.

Remark 5.2.16: \((\tau_i, \tau_j)\)- swg*-closed set and \((\tau_i, \tau_j)\)- pre- closed set are independent to each other as seen from the following examples.
Example 5.2.17: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$. In this bitopological space (X, τ_i, τ_j) the subset $\{a\}$ is (τ_i, τ_j)-pre-closed set which is not (τ_i, τ_j)-swg*-closed set.

Example 5.2.18: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$ and $\tau_j = \{X, \phi, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j) the subset $\{a, c\}$ is (τ_i, τ_j)-swg*-closed set which is not (τ_i, τ_j)-pre-closed set.

Remark 5.2.19: (τ_i, τ_j)-swg*-closed set and (τ_i, τ_j)-α-closed set are independent to each other as seen from the following examples.

Example 5.2.20: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j) the subset $\{b\}$ is (τ_i, τ_j)-α-closed set which is not (τ_i, τ_j)-swg*-closed set.

Example 5.2.21: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$ and $\tau_j = \{X, \phi, \{c\}, \{b, c\}\}$. In this bitopological space (X, τ_i, τ_j) the subset $\{b, c\}$ is (τ_i, τ_j)-swg*-closed set which is not (τ_i, τ_j)-α-closed set.

Remark 5.2.22: (τ_i, τ_j)-swg*-closed set and (τ_i, τ_j)-sg-closed set are independent to each other as seen from the following examples.

Example 5.2.23: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$ and $\tau_j = \{X, \phi, \{b\}\}$. In this bitopological space (X, τ_i, τ_j) the subset $\{b\}$ is (τ_i, τ_j)-swg*-closed set which is not (τ_i, τ_j)-sg-closed set.
Example 5.2.24: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a\}, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{b\}$ is (τ_i, τ_j)-sg-closed set which is not (τ_i, τ_j)-swg*-closed set.

Remark 5.2.25: (τ_i, τ_j)-swg*-closed set and (τ_i, τ_j)-gs-closed set are independent to each other as seen from the following examples.

Example 5.2.26: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$ and $\tau_j = \{X, \phi, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{b\}$ is (τ_i, τ_j)-sg-closed set which is not (τ_i, τ_j)-swg*-closed set.

Example 5.2.27: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{b, c\}\}$ and $\tau_j = \{X, \phi, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{b\}$ is (τ_i, τ_j)-swg*-closed set which is not (τ_i, τ_j)-gs-closed set.

Remark 5.2.28: (τ_i, τ_j)-swg*-closed set and (τ_i, τ_j)-ag-closed set are independent to each other as seen from the following examples.

Example 5.2.29: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$ and $\tau_j = \{X, \phi, \{a, b\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{b\}$ is (τ_i, τ_j)-ag-closed set which is not (τ_i, τ_j)-swg*-closed set.

Example 5.2.30: Let $X = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, b\}\}$ and $\tau_j = \{X, \phi, \{a, c\}\}$. In this bitopological space (X, τ_i, τ_j), the subset $\{a,b\}$ is (τ_i, τ_j)-swg*-closed set which is not (τ_i, τ_j)-ag-closed set.
Remark 5.2.31: \((\tau_i, \tau_j)\)-swg*-closed set and \((\tau_i, \tau_j)\)-g\(\alpha\)-closed set are independent to each other as seen from the following examples.

Example 5.2.32: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a, b\}\}\) and \(\tau_j = \{X, \phi, \{a\}, \{a, b\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\), the subset \(\{b\}\) is \((\tau_i, \tau_j)\)-g\(\alpha\)-closed set which is not \((\tau_i, \tau_j)\)-swg*-closed set.

Example 5.2.33: Let \(X = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a\}, \{a, b\}\}\) and \(\tau_j = \{X, \phi, \{c\}, \{b, c\}\}\). In this bitopological space \((X, \tau_i, \tau_j)\), the subset \(\{c\}\) is \((\tau_i, \tau_j)\)-swg*-closed set which is not \((\tau_i, \tau_j)\)-g\(\alpha\)-closed set.

Remark 5.2.34: From the above results the following relation is obtained.

\[
\begin{align*}
\text{\((\tau_i, \tau_j)\)-sg closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-pre-closed} \\
\text{\((\tau_i, \tau_j)\)-\(\alpha\)-closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-swg*-closed} \\
\text{\((\tau_i, \tau_j)\)-semi closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-\(\alpha\)g-closed} \\
\text{\((\tau_i, \tau_j)\)-\(\alpha\)g-closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-swg*-closed} \\
\text{\((\tau_i, \tau_j)\)-semi closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-\(\alpha\)g-closed} \\
\text{\((\tau_i, \tau_j)\)-semi closed} & \quad \Downarrow \quad \text{\((\tau_i, \tau_j)\)-\(\alpha\)g-closed} \\
\end{align*}
\]
5.3 \((\tau_i, \tau_j)\)-SEMI WEAKLY \(g^*-\) OPEN SETS

In this section the concept of \((\tau_i, \tau_j)\)-swg*- open sets in bitopological spaces are introduced and study some of their properties.

Definition 5.3.1: A subset \(A\) of a bitopological space \((X, \tau_i, \tau_j)\) is called \((\tau_i, \tau_j)\) semi weakly \(g^*\)-open (briefly \((\tau_i, \tau_j)\) swg*-open) if and only if \(A^c\) is \((\tau_i, \tau_j)\)-semi weakly \(g^*\)-closed set.

Theorem 5.3.2: A subset \(A\) in a bitopological space \((X, \tau_i, \tau_j)\) is \((\tau_i, \tau_j)\)-swg*-open if and only if \(F \subseteq \tau_j\)-g int \((A)\), whenever \(F\) is \(\tau_i\)-semi-closed and \(F \subseteq A\).

Proof: Assume that \(A\) is \((\tau_i, \tau_j)\)-swg*-open in \((X, \tau_i, \tau_j)\). Let \(F\) be \(\tau_i\)-semi-closed and \(F \subseteq A\). This implies \(F^c\) is \(\tau_i\)-semi open and \(A^c \subseteq F^c\). Since \(A^c\) is \((\tau_i, \tau_j)\)-swg*-closed, \(\tau_j\)-gcl \((A^c)\) \(\subseteq F^c\). Since \(\tau_j\)-gcl \((A^c)\) = \((\tau_j\)-g int\((A))^c, \(\tau_j\)-g int\((A))^c \subseteq F^c\) Therefore \(F \subseteq \tau_j\)-gint\((A)\). Conversely assume that \(F \subseteq \tau_j\)-gint \((A)\). Whenever \(F\) is \(\tau_j\)-semi closed, and \(F \subseteq A\). Let \(U\) be a \(\tau_j\)-semi open set in \((X, \tau_i, \tau_j)\) containing \(A^c\). Therefore \(U^c\) is \(\tau_j\)-semi closed set contained in \(A\) by hypothesis \(U^c \subseteq \tau_j\)-gint \((A)\) taking complements \(U \supseteq \tau_j\)-gcl \((A^c)\). Therefore \(A^c\) is \((\tau_i, \tau_j)\)-swg*-closed in \((X, \tau_i, \tau_j)\). Hence \(A\) is \((\tau_i, \tau_j)\)-swg*- open in \((X, \tau_i, \tau_j)\).

Theorem 5.3.3: If \(A \subseteq B \subseteq X\) where \(A\) is \((\tau_i, \tau_j)\)-swg*-open relative to \(B\) and \(B\) is \((\tau_i, \tau_j)\)-swg*-open relative to \(X\) then \(A\) is \((\tau_i, \tau_j)\)-swg*-open relative to \(X\).
Proof: Let F be a τ_i-semi closed set and suppose that $F \subseteq A$. Then F is τ_i-semi closed relative to B and hence $F \subseteq \tau_j g\text{-}\text{int}_B(A)$. Therefore there exists a τ_i-semi-open set U such that $F \subseteq U \cap B \subseteq A$. But $F \subseteq U^* \subseteq B$ for τ_i-semi-open set U^*.

Since B is swg^*-open in X. Thus $F \subseteq U^* \cap U \subseteq B \cap U \subseteq A$. It follows that $F \subseteq \tau_j g\text{-}\text{int}(A)$, because set A is (τ_i, τ_j)-swg^*-open set. This implies $F \subseteq \tau_j g\text{-}\text{int}(A)$. Whenever F is τ_i-semi-closed set and $F \subseteq A$. Therefore A is (τ_i, τ_j)-semi weakly g^*-open in X.

Theorem 5.3.4: If $\tau_j g\text{-}\text{int}(A) \subseteq B \subseteq A$ and if A is (τ_i, τ_j)-swg^*-open then B is (τ_i, τ_j)-swg^*-open.

Proof: $A^c \subseteq B^c \subseteq \tau_j g\text{-}\text{cl}(A^c)$ and since A^c is (τ_i, τ_j)-swg^*-closed set. It follows that B^c is (τ_i, τ_j)-swg^*-closed set because A is (τ_i, τ_j)-swg^*-closed and $A \subseteq B \subseteq \tau_j \text{gcl}(A)$. Then B is (τ_i, τ_j)-swg^*-open set.

5.4 (τ_i, τ_j)-QUASI SEMI WEAKLY g^*-OPEN FUNCTIONS AND (τ_i, τ_j)-QUASI SEMI WEAKLY g^*-CLOSED FUNCTIONS

In this section (τ_i, τ_j)-Quasi semi weakly g^*-open and (τ_i, τ_j)-Quasi semi weakly g^*-closed functions in bitopological spaces are introduced and study some of their properties.
Definition 5.4.1: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be any two bitopological spaces. A function \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)\) is said to be \((\tau_i, \tau_j)\)-quasi semi weakly \(g^*\)-open if the image of every \((\tau_i, \tau_j)\)-semi weakly \(g^*\)-open set in \(X\) is \(\sigma_i\)-open in \(Y\).

Theorem 5.4.2: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)\) be a function. Then the following are equivalent:

(i) \(f\) is \((\tau_i, \tau_j)\)-quasi \(swg^*\)-open;

(ii) For each subset \(U\) of \(X\), \(f((\tau_i, \tau_j)\text{-}g\text{ int}(U)) \subset \sigma_i\text{- int}(f(U))\);

(iii) For each \(x \in X\) and each \((\tau_i, \tau_j)\)-\(swg^*\)-neighbourhood \(U\) of \(x\) in \(X\), there exists a \(\sigma_i\)-neighbourhood \(V\) of \(f(x)\) such that \(V \subset f(U)\).

Proof: (i) \(\Rightarrow\) (ii): Let \(f\) be an \((\tau_i, \tau_j)\)-quasi \(swg^*\)-open function. Since \((\tau_i, \tau_j)\)-\(g\text{ int}(U)\) is an \((\tau_i, \tau_j)\)-\(swg^*\)-open set contained in \(U\), that implies \(f((\tau_i, \tau_j)\text{-}g\text{ int}(U)) \subset f(U)\). As \(f((\tau_i, \tau_j)\text{-}g\text{ int}(U))\) is \(\sigma_i\)-open, \(f((\tau_i, \tau_j)\text{-}g\text{ int}(U)) \subset \sigma_i\text{- int}(f(U))\).

(ii) \(\Rightarrow\) (iii): Let \(x \in X\) and \(U\) be an \((\tau_i, \tau_j)\)-\(swg^*\)-neighbourhood of \(x\) in \(X\). Then there exist an \((\tau_i, \tau_j)\)-\(swg^*\)-open set \(V\) in \(X\) such that \(x \in V \subset U\). Thus by (ii), \(f(V) = f((\tau_i, \tau_j)\text{-}g\text{ int}(V)) \subset \sigma_i\text{- int}(f(V)),\) and hence \(f(V)\) = \(\sigma_i\text{- int}(f(V))\). Therefore it follows that \(f(V)\) is \(\sigma_i\)-open such that \(f(x) \in f(V) \subset f(U)\).

(iii) \(\Rightarrow\) (i): Let \(U\) be an \((\tau_i, \tau_j)\)-\(swg^*\)-open set in \(X\). Then by (iii), for each \(y \in f(U)\), there exists a \(\sigma_i\)-neighbourhood \(V_y\) of \(y\) such that \(V_y \subset f(U)\). As \(V_y\) is a \(\sigma_i\)-neighbourhood of \(y\), there exists a \(\sigma_i\)-open set \(W_y\) such that \(Y \in W_y \subset V_y\). Thus \(f(U) = \cup\{W_y : Y \in f(U)\}\) is \(\sigma_i\)-open. Hence, \(f\) is \((\tau_i, \tau_j)\)-quasi \(swg^*\)-open.
Theorem 5.4.3: A function \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) is \((\tau_i, \tau_j)\)-quasi swg* - open, if and only if for any subset \(B \) of \(Y \) and for any \((\tau_i, \tau_j)\)-swg*-closed set \(F \) in \(X \) such that \(f^{-1}(B) \subset F \), there exists a \(\sigma_i \)-closed set \(G \) containing \(B \) such that \(f^{-1}(G) \subset F \).

Proof: Suppose that \(f \) is \((\tau_i, \tau_j)\)-quasi swg* - open. Let \(B \subset Y \) and \(F \) be an \((\tau_i, \tau_j)\)-swg*-closed set in \(X \) such that \(f^{-1}(B) \subset F \). Now, put \(G = Y - f(X - F) \). It is clear that \(B \subset G \) as \(f^{-1}(B) \subset F \), and that \(f^{-1}(G) \subset F \). Also \(G \) is \(\sigma_i \)-closed, since \(f \) is \((\tau_i, \tau_j)\)-quasi- swg*-open. Conversely, let \(U \) be an \((\tau_i, \tau_j)\)-swg*-open set in \(X \), and put \(B = Y - f(U) \). Then \(X - U \) is an \((\tau_i, \tau_j)\)-swg*-closed set in \(X \) such that \(f^{-1}(B) \subset X - U \). By hypothesis, there exists a \(\sigma_i \)-closed set \(G \) such that \(B \subset G \) and \(f^{-1}(G) \subset X - U \). Hence, \(f(U) \subset Y - G \). On the other hand \(B \subset G \), \(Y - G \subset Y - B = f(U) \). Thus \(f(U) = Y - G \) is \(\sigma_i \)-open and hence \(f \) is a \((\tau_i, \tau_j)\)-quasi swg* - open.

Theorem 5.4.4: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) be a function. Then the following are equivalent:

(i) \(f \) is \((\tau_i, \tau_j)\)-quasi swg*-open;

(ii) \(f^{-1}(\sigma_i\text{-cl}(B)) \subset (\tau_i, \tau_j)\)-gcl\((f^{-1}(B)) \) for every subset \(B \) of \(Y \);

(iii) \((\tau_i, \tau_j)\)-g int\((f^{-1}(B)) \subset f^{-1}(\sigma_i\text{-int}(B)) \) for every subset \(B \) of \(Y \).

Proof:

(i) \(\Rightarrow \) (ii): Suppose that \(f \) is \((\tau_i, \tau_j)\)-quasi swg* - open set. Now, for any subset \(B \) of \(Y \), \(f^{-1}(B) \subset (\tau_i, \tau_j)\)-gcl\((f^{-1}(B)) \). Therefore by theorem 5.4.3, there exists \(\sigma_i \)-closed set \(G \)
such that $B \subseteq G$ and $f^{-1}(G) \subseteq (\tau_i, \tau_j)$-gcl$(f^{-1}(B))$. Hence, $f^{-1}(\sigma_i\text{-cl}(B)) \subseteq f^{-1}(G) \subseteq (\tau_i, \tau_j)$-gcl$(f^{-1}(B))$.

(ii) \Rightarrow (i): Let $B \subseteq Y$ and F be an (τ_i, τ_j)-swg*-closed set in X such that $f^{-1}(B) \subseteq F$. Put $G = \sigma_i\text{-cl}(B)$, then $B \subseteq G$, G is σ_i-closed, and $f^{-1}(G) \subseteq (\tau_i, \tau_j)$-gcl$(f^{-1}(B)) \subseteq F$. Thus by theorem 5.4.3, f is (τ_i, τ_j)-quasi swg*-open set.

(ii)\Leftrightarrow(iii): It is clear, because $f^{-1}(\sigma_i\text{-cl}(B)) \subseteq (\tau_i, \tau_j)$-gcl$(f^{-1}(B))$ for every subset B of Y is equal to (τ_i, τ_j)-g int$(f^{-1}(B)) \subseteq f^{-1}(\sigma_i\text{-int}(B))$ for every subset B of Y.

Theorem 5.4.5: Let $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ and $g : (Y, \sigma_i, \sigma_j) \rightarrow (Z, \eta_i, \eta_j)$ be two functions such that $g \circ f : X \rightarrow Z$ is (τ_i, τ_j)-quasi swg*-open. If g is a pairwise continuous injection then f is (τ_i, τ_j)-quasi swg*-open set.

Proof: Let U be an (τ_i, τ_j)-swg*-open set in X. Then $g \circ f(U)$ is η_i-open as $g \circ f$ is (τ_i, τ_j)-quasi swg*-open. Since g is a pairwise continuous injection, $f(U) = g^{-1}(g \circ f(U))$ is σ_i-open. Hence, f is (τ_i, τ_j)-quasi swg*-open set.

Definition 5.4.6: A function $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is said to be (τ_i, τ_j)-quasi swg* closed if the image of each (τ_i, τ_j)-swg*-closed set in X is σ_i-closed in Y.

Theorem 5.4.7: A function $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is (τ_i, τ_j)-quasi swg*-closed set if and only if $\sigma_i\text{-cl}(f(A)) \subseteq f((\tau_i, \tau_j)\text{-gcl}(A))$ for every subset A of X.

Proof: Let f be (τ_i, τ_j)-quasi swg*-closed set, there exist $\sigma_i\text{-cl}(f(A)) \subseteq f((\tau_i, \tau_j)\text{-gcl}(A))$ for every subset A of X. Conversely, every $\sigma_i\text{-cl}(f(A)) \subseteq f((\tau_i, \tau_j)\text{-gcl}(A))$ is (τ_i, τ_j)-quasi swg*-closed.

[79]
Theorem 5.4.8: Let $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ be a function. Then the following are equivalent:

(i) f is (τ_i, τ_j)-quasi swg*-closed;

(ii) For any subset B of Y and for any (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(B) \subseteq G$, there exists a σ_i-open set U containing B such that $f^{-1}(U) \subseteq G$;

(iii) For each $y \in Y$ and for any (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(\{y\}) \subseteq G$, there exists a σ_i-open set U containing $\{y\}$ such that $f^{-1}(U) \subseteq G$.

Proof:

(i)\Rightarrow(ii): Suppose f is (τ_i, τ_j)-quasi swg* closed set. Now there exist for any subset B of Y and for (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(B) \subseteq G$, there exist a σ_i-open set U containing B such that $f^{-1}(U) \subseteq G$.

(ii)\Rightarrow(iii) : For any subset B of Y and for any (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(B) \subseteq G$, there exists a σ_i-open set U containing B such that $f^{-1}(V) \subseteq G$. Also there exist for each $y \in Y$ and for any (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(\{y\}) \subseteq G$, there exists a σ_i-open set containing $\{y\}$ such that $f^{-1}(U) \subseteq G$.

(iii)\Rightarrow(i): For each $y \in Y$ and for any (τ_i, τ_j)-swg*-open set G in X such that $f^{-1}(\{y\}) \subseteq G$, there exists a σ_i-open set U containing $\{y\}$ such that $f^{-1}(U) \subseteq G$. Then f is (τ_i, τ_j)-quasi swg*-closed set.

Definition 5.4.9: A function $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is called pairwise swg***-closed if the image of every (τ_i, τ_j)-swg*-closed set in X is (τ_i, τ_j)-swg*-closed set in Y.
Theorem 5.4.10: Let \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j) \) be a function. Then the following as equivalent:

(i) \(f \) is pairwise swg\(^{**}\)-closed;

(ii) For any subset \(B \) of \(Y \) and for any \((\tau_i, \tau_j)\)-swg*-open set \(G \) in \(X \) such that \(f^{-1}(B) \subset G \), there exists an \((\tau_i, \tau_j)\)-swg*-open set \(U \) in \(Y \) such that \(B \subset U \) and \(f^{-1}(U) \subset G \);

(iii) For each \(y \in Y \) and for any \((\tau_i, \tau_j)\)-swg*-open set \(G \) in \(X \) such that \(f^{-1}(\{y\}) \subset G \), there exists an \((\tau_i, \tau_j)\)-swg*-open set \(U \) in \(Y \) such that \(y \in U \) and \(f^{-1}(U) \subset G \);

(iv) \((\tau_i, \tau_j)\)-gcl\((f(A)) \subset f((\tau_i, \tau_j)\)-gcl\((A)) \) for every subset \(A \) of \(X \).

Proof:

(i) \(\Rightarrow \) (ii): Let \(f \) be an pairwise swg\(^{**}\)-closed. By definition 5.4.9, \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j) \) is called pairwise swg\(^{**}\)-closed if the image of every \((\tau_i, \tau_j)\)-swg*-closed set in \(X \) is \((\tau_i, \tau_j)\)-swg*-closed set in \(Y \). There exists for any subset \(B \) of \(Y \) and for any \((\tau_i, \tau_j)\)-swg*-open set \(G \) in \(X \) such that \(f^{-1}(B) \subset G \). Also there exists an \((\tau_i, \tau_j)\)-swg*-open set \(U \) in \(Y \), such that \(B \subset U \) and \(f^{-1}(U) \subset G \).

(ii) \(\Rightarrow \) (iii): For any subset \(B \) of \(Y \) and for any \((\tau_i, \tau_j)\)-swg*-open set \(G \) in \(X \) such that \(f^{-1}(B) \subset G \), there exists an \((\tau_i, \tau_j)\)-swg*-open set \(U \) in \(Y \) such that \(B \subset U \) and \(f^{-1}(U) \subset G \). There exist for \(y \in Y \) and for any \((\tau_i, \tau_j)\)-swg*-open set \(G \) in \(X \), such that \(f^{-1}(\{y\}) \subset G \). Also there exists an \((\tau_i, \tau_j)\)-swg*-open set \(U \) in \(Y \) such that \(y \in U \) and \(f^{-1}(U) \subset G \).
(iii)⇒(iv) : Let each \(y \in Y \) and for any \((\tau_i, \tau_j) \)-swg*-open set \(G \) in \(X \) such that
\[f^{-1}(\{y\}) \subset G, \]
there exists an \((\tau_i, \tau_j) \)-swg*-open set \(U \) in \(Y \) such that \(y \in U \) and
\[f^{-1}(U) \subset G. \]
This implies \((\tau_i, \tau_j)\)-gcl \((f(A)) \subset f(\tau_i, \tau_j)\)-gcl\((A)) \) for every subset \(A \) of \(X \).

(iv)⇒(i) : Let \((\tau_i, \tau_j)\)-gcl\((f(A)) \subset f((\tau_i, \tau_j)\)-gcl\((A)) \) for every subset \(A \) of \(X \). There exist \(f \) is pairwise swg**-closed.

Theorem 5.4.11: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \eta_i, \eta_j) \) are two \((\tau_i, \tau_j)\)-quasi swg*-closed functions, then \(g\circ f : (X, \tau_i, \tau_j) \to (Z, \eta_i, \eta_j) \) is \((\tau_i, \tau_j)\)-quasi swg*-closed.

Proof: If \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \eta_i, \eta_j) \) are two \((\tau_i, \tau_j)\)-quasi swg*-closed set. Let \(U \) be an \((\tau_i, \tau_j)\)-swg*-closed set in \(X \). Then \(g\circ f \) is \((\tau_i, \tau_j)\)-quasi swg*-closed set.

Theorem 5.4.12: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \eta_i, \eta_j) \) be any two functions. Then if \(f \) is pairwise swg*-closed and \(g \) is \((\tau_i, \tau_j)\)-quasi swg*-closed set the \(g\circ f \) is pairwise closed.

Proof: If \(f \) is pairwise swg*-closed and \(g \) is \((\tau_i, \tau_j)\)-quasi swg*-closed set then \(g\circ f \) is pairwise closed.

Theorem 5.4.13: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \eta_i, \eta_j) \) be any two functions. Then if \(f \) is pairwise swg***-closed and \(g \) is \((\tau_i, \tau_j)\)-quasi swg*-closed then \(g\circ f \) is \((\tau_i, \tau_j)\)-quasi swg*-closed.
Proof: If \(f \) is pairwise \(\text{swg}^{**} \)-closed and \(g \) is \((\tau_i, \tau_j)\)-quasi \(\text{swg}^* \)-closed then \(g \circ f \) is \((\tau_i, \tau_j)\)-quasi \(\text{swg}^* \)-closed set.

Definition 5.4.14: A function \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) is called pairwise \(\text{swg}^* \)-irresolute, if \(f^{-1}(V) \) is \((\tau_i, \tau_j)\)-\(\text{swg}^* \)-open in \((X, \tau_i, \tau_j)\) for every \((\tau_i, \tau_j)\)-\(\text{swg}^* \)-open set \(V \) in \(Y \).

Definition 5.4.15: A function \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) is called pairwise \(\text{swg}^* \)-continuous, if \(f^{-1}(V) \) is \((\tau_i, \tau_j)\)-\(\text{swg}^* \)-open in \((X, \tau_i, \tau_j)\) for every \(\sigma_i \)-open set \(V \) in \(Y \).

Theorem 5.4.16:

Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \eta_i, \eta_j) \) be two functions such that \(g \circ f : X \to Z \) is \((\tau_i, \tau_j)\)-quasi \(\text{swg}^* \)-closed. Then

(i) If \(f \) is a pairwise \(\text{swg}^* \)-irresolute surjection, then \(g \) is \((\tau_i, \tau_j)\)-quasi \(\text{swg}^* \)-closed.

(ii) If \(g \) is a pairwise \(\text{swg}^* \)-continuous injection, then \(f \) is pairwise \(\text{swg}^{**} \)-closed.

Proof:

(i) Suppose that \(F \) is \((\tau_i, \tau_j)\)-\(\text{swg}^* \)-closed set in \(Y \). Then \(f^{-1}(F) \) is \((\tau_i, \tau_j)\)-\(\text{swg}^* \)-closed in \(X \) as \(f \) is pairwise \(\text{swg}^* \)-irresolute. Since \(g \circ f \) is \((\tau_i, \tau_j)\)-quasi \(\text{swg}^* \)-closed.
closed and f is surjective \((g \circ f)(f^{-1}(F)) = g(F)\) is \(\eta_i\)-closed. Hence g is \((\tau_i, \tau_j)\)-quasi-sw\(g^\ast\)-closed.

(ii) Suppose that F is an \((\tau_i, \tau_j)\)-sw\(g^\ast\)-closed set in X. Since \(g \circ f\) is \((\tau_i, \tau_j)\)-quasi-sw\(g^\ast\)-closed set, \((g \circ f)(F)\) is \(\eta_i\)-closed, but g is a pairwise sw\(g^\ast\)-continuous injection, so \(g^{-1}(g \circ f(F)) = f(F)\) is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-closed set in Y. Hence f is pairwise sw\(g^\ast\)-closed.

Theorem 5.4.17: Let \(g : (Y, \sigma_i, \sigma_j) \to (Z, \sigma_i, \sigma_j)\) be a function. Then g is \((\tau_i, \tau_j)\)-quasi-sw\(g^\ast\)-closed if and only if g(X) is \(\sigma_i\)-closed, and \(g(V) - g(X-V)\) is \(\sigma_i\)-open in g(X) whenever V is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-open in X.

Proof: Necessity: Let g is \((\tau_i, \tau_j)\)- quasi-sw\(g^\ast\)-closed. Then g(X) is \(\sigma_i\)-closed as X is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-closed and \(g(V) - g(X-V) = g(X) - g(X-V)\) is \(\sigma_i\)-open in g(X) when V is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-open in X.

Sufficiency: Suppose that g(X) is \(\sigma_i\)-closed and \(g(V) - g(X-V)\) is \(\sigma_i\)-open is g(X) when V is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-open set in X, and let C be \((\tau_i, \tau_j)\)-sw\(g^\ast\)-closed set in X. Then g(C) = g(X) - (g(X-C) - g(C)) is \(\sigma_i\)-closed in g(X) and therefore g(C) is \(\sigma_i\)-closed. Hence, g is \((\tau_i, \tau_j)\)-quasi-sw\(g^\ast\)-closed set.

Corollary 5.4.18: Let g : \((X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)\) be a surjection. Then g is \((\tau_i, \tau_j)\)-quasi-sw\(g^\ast\)-closed if and only if \(g(V) - g(X-V)\) is \(\sigma_i\)-open whenever V is \((\tau_i, \tau_j)\)-sw\(g^\ast\)-open in X.
Definition 5.4.19: A Space \((X, \tau_i, \tau_j)\) is said to be pairwise swg*-normal if for any disjoint subset \(F_1 \in (\tau_i, \tau_j)\)-SWG*C \((X)\) and \(F_2 \in (\tau_j, \tau_i)\)-SWG*C \((X)\), there exist disjoint subsets \(U \in \tau_i\) and \(V \in \tau_j\) such that \(F_1 \subset U\) and \(F_2 \subset V\).

Theorem 5.4.20: Let \((X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) be two spaces, where \(X\) is pairwise swg*-normal. Let \(g : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) be a pairwise swg*-continuous, \((\tau_i, \tau_j)\)-quasi swg*-closed surjection. Then \(Y\) is pairwise normal.

Proof: Let \(X\) be pairwise swg*-normal. Let \(K\) be \(\sigma_i\)-closed and \(M\) be \(\sigma_j\)-closed disjoint subsets of \(Y\). Then \(g^{-1}(K) \in (\tau_i, \tau_j)\)-SWG*C \((X), g^{-1}(M) \in (\tau_j, \tau_i)\)-SWG*C \((X)\) and \(g^{-1}(K) \cap g^{-1}(M) = \phi\). Since \(X\) is pairwise swg*-normal, there exist disjoint sets \(V \in \tau_i\) and \(W \in \tau_j\) such that \(g^{-1}(K) \subset V\) and \(g^{-1}(M) \subset W\). Thus \(K \subset g(V) - g(X - V)\) and \(M \subset g(W) - g(X - W)\). It follows also from corollary 5.4.18 that \(g(V) - g(X - V) \in \sigma_i\) and \(g(W) - g(X - W) \in \sigma_j\), and clearly \((g(V) - g(X - V)) \cap (g(W) - g(X - W)) = \phi\) because \(V \cap W = \phi\). Hence \(Y\) is pairwise normal.

Theorem 5.4.21: Let \((X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) be two spaces, where \(X\) is pairwise swg*-normal. Let \(g : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) be a pairwise swg*-irresolute, \((\tau_i, \tau_j)\)-quasi swg*-closed surjection. Then \(Y\) is pairwise swg*-normal.

Proof: Let \(X\) be pairwise swg*-normal. Let \(K\) be \(\sigma_i\)-swg*-closed and \(M\) be \(\sigma_j\)-swg*-closed disjoint subsets of \(Y\). Then \(g^{-1}(K) \in (\tau_i, \tau_j)\)-SWG*C \((X), g^{-1}(M) \in (\tau_j, \tau_i)\)-SWG*C \((X)\) and \(g^{-1}(K) \cap g^{-1}(M) = \phi\). Since \(X\) is pairwise swg*-normal, there exists disjoint sets \(V \in \tau_i\) and \(W \in \tau_j\) such that \(g^{-1}(K) \subset V\) and \(g^{-1}(M) \subset W\).
Thus $K \subset g(V) - g(X-V)$ and $M \subset g(W) - g(X-W)$. It follows from corollary 5.2.18, that $g(V) - g(X-V) \in \sigma_i$ and $g(W) - g(X-W) \in \sigma_j$. Clearly $g(V) - g(X-V) \cap (g(W) - g(X-W)) = \emptyset$ because $V \cap W = \emptyset$. Hence Y is pairwise swg^*-normal.

5.5 (τ_i,τ_j)-SEMI WEAKLY g^*-CONTINUOUS FUNCTIONS IN BITOPOLOGICAL SPACES

In this section (τ_i,τ_j)-swg^*-continuous functions in bitopological spaces are introduced and study some of their properties.

Definition 5.5.1: A function $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is said to be (τ_i, τ_j)-σ_i-semi weakly g^*-continuous function, if the inverse image of every σ_i-closed set in Y is (τ_i, τ_j)-semi weakly g^*-closed set in X.

Definition 5.5.2: A function $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is called (τ_i, τ_j)-semi weakly g^*-irresolute (briefly (τ_i, τ_j)-swg^*-irresolute) function, if $f^{-1}(V)$ is (τ_i, τ_j)-swg^*-closed set in X for every (τ_i, τ_j)-swg^*-closed set V of Y.

Theorem 5.5.3: The following are equivalent for a function $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$.

(i) f is pairwise swg^*-continuous function

(ii) $f^{-1}(U)$ is (τ_i, τ_j)-swg^*-closed for each σ_i-closed set U in Y, $i \neq j$ and $(\tau_i, \tau_j)= 1,2$.

86
Proof:

(i)⇒(ii): Suppose that f is pairwise swg^*-continuous. Let A be σ_j-closed in Y. Then A^c is σ_j-open in Y. Since f is pairwise swg^*-continuous, $f^{-1}(A^c)$ is (τ_i, τ_j)-swg^*-open in X, $i \neq j$ and $(\tau_i, \tau_j)=1,2$. Consequently, $f^{-1}(A)$ is (τ_i, τ_j)-swg^*-closed set in X.

(ii)⇒(i): Suppose that $f^{-1}(U)$ is (τ_i, τ_j)-swg^*-closed for each σ_i-closed set U in Y, $i \neq j$ and $(\tau_i, \tau_j)=1,2$. Let V be σ_j-open in Y. Then V^c is σ_j-closed in Y. Therefore by our assumption, $f^{-1}(V^c)$ is (τ_i, τ_j)-swg^*-closed in X, $i \neq j$ and $(\tau_i, \tau_j)=1,2$. Hence $f^{-1}(V)$ is (τ_i, τ_j)-swg^*-open in X. This completes the proof.

Lemma 5.5.4: A function $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is (τ_j, τ_i)-swg^*-irresolute, then for every subset B of Y, (τ_j, τ_i)-swg^*-$\text{cl}(f^{-1}(B)) \subseteq f^{-1}((\tau_j, \tau_i)$-$\text{swg}^*$-$\text{cl}(B))$.

Proof: Let $x \in (\tau_j, \tau_i)$-swg^*-$\text{cl}(f^{-1}(B))$. Suppose that V is (τ_j, τ_i)-swg^*-open set of Y, containing f (x), i.e. f $(x) \in V$, then $x \in f^{-1}(V)$. Since $f^{-1}(V)$ is (τ_j, τ_i)-swg^*-open of X, then $f^{-1}(V) \cap f^{-1}(B) \neq \emptyset$ implies that $f^{-1}(V \cap B) \neq \emptyset$ and $V \cap B \neq \emptyset$. Thus $f(x) \in (\tau_j, \tau_i)$-$\text{swg}^*$-$\text{cl}(B)$ and $x \in f^{-1}(f(x)) \in f^{-1}((\tau_j, \tau_i)$-$\text{swg}^*$-$\text{cl}(B))$, this means $x \in f^{-1}((\tau_j, \tau_i)$-$\text{swg}^*$-$\text{cl}(B))$. Hence $((\tau_j, \tau_i)$-swg^*-$\text{cl}(f^{-1}(B)) \subseteq f^{-1}((\tau_j, \tau_i)$-$\text{swg}^*$-$\text{cl}(B))$.

Lemma 5.5.5: If a function $f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is τ_i-closed, then for each subset $S \subseteq Y$ and each τ_i-open set U containing $f^{-1}(S)$, there is a σ_i-open set V containing S such that $f^{-1}(V) \subseteq U$.

87
Proof: Let $S \subset Y$ and U is τ_i-open containing $f^{-1}(S)$, Put $V=Y-f(X-U)$. Then U is σ_i-open set in Y containing S. It follows that $f^{-1}(V) \subset U$.

Theorem 5.5.6: Let $f: (X, \tau_1, \tau_j) \to (Y, \sigma_1, \sigma_j)$ be a function and f is (τ_i, τ_j)-swg*-continuous, then for each $x \in X$ and for each σ_j-open set V containing $f(x)$, there is an (τ_i, τ_j)-swg*-open set U containing x such that $f(U) \subset V$.

Proof: Let $x \in X$ and V be σ_i-open set containing $f(x)$. Then f is (τ_i, τ_j)-swg*-continuous, so $f^{-1}(V)$ is (τ_i, τ_j)swg*-open set of X containing X. If $U=f^{-1}(V)$, then $f(U) \subset V$.

Theorem 5.5.7: Let $f: (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ be a function and each $x \in X$ and for each σ_j-open set V containing $f(x)$, there is an (τ_i, τ_j)-swg*-open set U containing x such that $f(U) \subset V$. Then $f((\tau_i, \tau_j)$-swg* cl $(A)) \subset \tau_j$-cl $(f(A))$ for each subset A of X.

Proof: Let A be a subset of a space X and $f(x) \not\in \tau_j$-cl $(f(A))$. Then there exists σ_i-open set V of Y containing $f(x)$ such that $V \cap f(A) = \emptyset$. Then for each $x \in X$ and for each σ_j-open set V containing $f(x)$, there is an (τ_i, τ_j)-swg*-open set U containing x such that $f(U) \subset V$, so there is an (τ_i, τ_j)-swg*-open set U such that $f(x) \in f(U) \subset V$. Hence $f(U) \cap f(A) = \emptyset$ implies $U \cap A = \emptyset$. Consequently, $x \not\in (\tau_i, \tau_j)$-swg*cl$(A)$ and $f(x) \not\in f((\tau_i, \tau_j)$-swg*cl$(A))$.

88
Theorem 5.5.8: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) be a function and \(f((\tau_i, \tau_j)\text{-swg } \ast \text{-cl} \,(A)) \subset \tau_j\text{-cl} \,(f(A)) \) for each subset \(A \) of \(X \) then \((\tau_i, \tau_j)\text{-swg } \ast \text{-cl}(f^{-1}(B)) \subset f^{-1}(\tau_j\text{-cl} \,(B)) \) for each subset \(B \) of \(Y \).

Proof: Let \(B \) be a subset of \(Y \) and \(A = f^{-1}(B) \). Then \(f((\tau_i, \tau_j)\text{-swg } \ast \text{-cl}(A)) \subset \tau_j\text{-cl} \,(f(A)) \) for each subset \(A \) of \(X \), so \(((\tau_i, \tau_j)\text{-swg } \ast \text{-cl}(f^{-1}(B)) \subset \tau_j\text{-cl} \,(f(f^{-1}(B))) \subset \tau_j\text{-cl} \,(B) \). Thus \((\tau_i, \tau_j)\text{-swg } \ast \text{-cl}(f^{-1}(B)) \subset f^{-1}(\tau_j\text{-cl} \,(B)) \).

Theorem 5.5.9: If a map \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) is \(\tau_i\text{-closed} \) set and \((\tau_j, \tau_i)\text{-swg} \ast \text{-irresolute} \), then for each \((\tau_i, \tau_j)\text{-swg} \ast \text{-closed} \) set \(B \) of \(Y \), \(f^{-1}(B) \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-closed} \) set in \(X \).

Proof: Let \(B \) be an \((\tau_i, \tau_j)\text{-swg} \ast \text{-closed} \) subset of \(Y \) and \(f^{-1}(B) \subset U \), where \(U \) is a \(\tau_i\text{-open} \) set of \(X \). Since \(f \) is \(\tau_i\text{-closed} \) set, by lemma 5.5.5 there is a \(\sigma_i\text{-open} \) set \(V \) such that \(B \subset V \) and \(f^{-1}(V) \subset U \). Since \(B \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-closed} \) set and \(B \subset V \), then \((\tau_j, \tau_i)\text{-gcl}(B) \subset V \). Hence \(f^{-1}((\tau_j, \tau_i)\text{-gcl} \,(B)) \subset f^{-1}(V) \subset U \). By lemma 5.5.4 \((\tau_j, \tau_i)\text{-gcl}(f^{-1}(B)) \subset U \) and hence \(f^{-1}(B) \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-closed} \) set in \(X \).

Theorem 5.5.10: Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) and \(g : (Y, \sigma_i, \sigma_j) \to (Z, \upsilon_i, \upsilon_j) \) be two functions. Then:

(i) If \(f \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-continuous} \) and \(g \) is \(\tau_j\text{-continuous} \), then \(g \circ f \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-continuous} \).

(ii) If \(f \) is \(\tau_j\text{-swg} \ast \text{-irresolute} \), \(\tau_i\text{-closed} \) and \(g \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-continuous} \), then \(g \circ f \) is \((\tau_i, \tau_j)\text{-swg} \ast \text{-continuous} \).
Proof:

(i) Let \(W \) be a \(\nu_j \)-closed set of \(Z \). Since \(g \) is \(\sigma_j \)-continuous, then \(g^{-1}(W) \) is \(\sigma_j \)-closed set of \(Y \). Since \(f \) is \((\tau_i, \tau_j)\)-swg* continuous, then \((g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \) is \((\tau_i, \tau_j)\)-swg*-closed set of \(X \). Hence \(g \circ f \) is \((\tau_i, \tau_j)\)-swg*-continuous.

(ii) Let \(W \) be a \(\nu_j \)-closed set of \(Z \). Since \(g \) is an \((\tau_i, \tau_j)\)-swg* continuous, then \(g^{-1}(W) \) is \((\tau_i, \tau_j)\)-swg* closed set of \(Y \). By theorem 5.5.6 \((g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \) is an \((\tau_i, \tau_j)\)-swg*-closed of \(X \). Hence \(g \circ f \) is \((\tau_i, \tau_j)\)swg* continuous.

Remark 5.5.11: \((\tau_i, \tau_j)\)-\(\sigma_i \)-semi continuous function and \((\tau_i, \tau_j)\)-\(\sigma_i \)-swg*-continuous function are independent.

Example 5.5.12: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X = Y = \{a, b, c\} \) with the bitopologies \(\tau_i = \{X, \phi, \{a\}\}, \tau_j = \{X, \phi, \{a, b\}\} \) and \(\sigma_i = \{Y, \phi, \{b\}\}, \sigma_j = \{Y, \phi, \{c\}\} \). Define \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) by \(f(a) = c, f(b) = b, f(c) = a \). A function \(f \) is \((\tau_i, \tau_j)\)-\(\sigma_i \)-swg*-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i \)-semi continuous function, since the inverse image of \(\sigma_i \)-closed set \(\{a, c\} \) in \(Y \) is not \((\tau_i, \tau_j)\)-semi closed in \(X \).

Example 5.5.13: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X = Y = \{a, b, c\} \) with the bitopologies \(\tau_i = \{X, \phi, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}, \{b, c\}\} \) and \(\sigma_i = \{Y, \phi, \{a, b\}\}, \sigma_j = \{Y, \phi, \{b\}\} \). Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) be defined by identity map. A function \(f \) is \((\tau_i, \tau_j)\)-\(\sigma_i \)-semi continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i \)-
swg*-continuous function, since the inverse image of \(\sigma_i \)-closed set \(\{c\} \) in \(Y \) is not \((\tau_i, \tau_j)\)-swg*-closed in \(X \).

Remark 5.5.14: \((\tau_i, \tau_j)\)-\(\sigma_i\)-pre-continuous function and \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function are independent.

Example 5.5.15: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X = Y = \{a, b, c\} \) with the bitopologies \(\tau_i = \{X, \phi, \{b\}\}, \tau_j = \{X, \phi, \{c\}\} \) and \(\sigma_i = \{Y, \phi, \{a, c\}\}, \sigma_j = \{Y, \phi, \{b\}, \{b, c\}\} \). Define \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) by \(f(a) = c, f(b) = b, f(c) = a \). A function \(f \) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-pre-continuous function, since the inverse image of \(\sigma_i \)-closed set \(\{b\} \) in \(Y \) is not \((\tau_i, \tau_j)\)-swg*-closed in \(X \).

Example 5.5.16: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X = Y = \{a, b, c\} \) with the bitopologies \(\tau_i = \{X, \phi, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}, \{b, c\}\} \) and \(\sigma_i = \{Y, \phi, \{a, b\}\}, \sigma_j = \{Y, \phi, \{a\}\} \). Let \(f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j) \) be defined by identity map. A function \(f \) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-pre-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function, since the inverse image of \(\sigma_i \)-closed \(\{c\} \) in \(Y \) is not \((\tau_i, \tau_j)\) swg*-closed in \(X \).

Remark 5.5.17: \((\tau_i, \tau_j)\)-\(\sigma_i\)-\(\alpha\)-continuous function and \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function are independent.
Example 5.5.18: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let
\(X = Y = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a\}\}, \tau_j = \{X, \phi, \{b\}\}\) and
\(\sigma_i = \{Y, \phi, \{c\}\}, \sigma_j = \{Y, \phi, \{a, b\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by \(f(a) = b, f(b) = a, f(c) = c\). A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-\swg*-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-\(\alpha\)-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{a, b\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-\(\alpha\)-closed in \(X\).

Example 5.5.19: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let
\(X = Y = \{a, b, c\}\) with the bitopological \(\tau_i = \{X, \phi, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}, \{b, c\}\}\) and
\(\sigma_i = \{Y, \phi, \{a, b\}\}, \sigma_j = \{Y, \phi, \{a\}, \{a, b\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by
f(a) = b, f(b) = a, f(c) = c. A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-\(\alpha\)-continuous which is not
\((\tau_i, \tau_j)\)-\(\sigma_i\)-\swg*-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{c\}\) in \(Y\) is not
\((\tau_i, \tau_j)\)-\swg*-closed in \(X\).

Remark 5.5.20: \((\tau_i, \tau_j)\)-\(\sigma_i\)-semi generalized continuous function and \((\tau_i, \tau_j)\)-\(\sigma_i\)-
\swg*-continuous function are independent.

Example 5.5.21: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let
\(X = Y = \{a, b, c\}\) with the bitopologies \(\tau_i = \{X, \phi, \{a\}\}, \tau_j = \{X, \phi, \{b\}\}\) and
\(\sigma_i = \{Y, \phi, \{c\}\}, \sigma_j = \{Y, \phi, \{a, b\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by
f(a) = b, f(b) = a, f(c) = c. A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-\swg*-continuous which is not
\((\tau_i, \tau_j)\)-\(\sigma_i\)-semi generalized continuous function, since the inverse image of
\(\sigma_i\)-closed set \(\{a, b\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-semi generalized closed in \(X\).
Example 5.5.22: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let

\[X = Y = \{a, b, c\} \]

with the bitopologies \(\tau_i = \{X, \phi, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}, \{b, c\}\}\) and \(\sigma_i = \{Y, \phi, \{a, b\}\}, \sigma_j = \{Y, \phi, \{a\}, \{a, b\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by \(f(a) = b, f(b) = a, f(c) = c\). A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-semi generalized continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{c\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-swg*-closed in \(X\).

Remark 5.5.23: \((\tau_i, \tau_j)\)-\(\sigma_i\)-generalized semi continuous function and \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function are independent.

Example 5.5.24: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let

\[X = Y = \{a, b, c\} \]

with the bitopologies \(\tau_i = \{X, \phi, \{b, c\}\}, \tau_j = \{X, \phi, \{b\}, \{b, c\}\}\) and \(\sigma_i = \{Y, \phi, \{a, b\}\}, \sigma_j = \{Y, \phi, \{a\}, \{a, b\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by \(f(a) = b, f(b) = a, f(c) = c\). A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-generalized semi continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{c\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-swg*-closed in \(X\).

Example 5.5.25: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let

\[X = Y = \{a, b, c\} \]

with the bitopologies \(\tau_i = \{X, \phi, \{a, b\}\}, \tau_j = \{X, \phi, \{b, c\}\}\) and \(\sigma_i = \{Y, \phi, \{c\}\}, \sigma_j = \{Y, \phi, \{b\}, \{a, c\}\}\). Define \(f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by \(f(a) = b, f(b) = a, f(c) = c\). A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-swg*-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-generalized semi continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{a, b\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-generalized semi closed in \(X\).
Remark 5.5.26: (τ_i, τ_j)- σ_i-α- generalized continuous function and (τ_i, τ_j)- σ_i-swg^*-continuous function are independent.

Example 5.5.27: Let (X, τ_i, τ_j) and (Y, σ_i, σ_j) be two bitopological spaces. Let $X = Y = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a, b\}\}$, $\tau_j = \{X, \phi, \{a, c\}\}$ and $\sigma_i = \{Y, \phi, \{c\}\}$, $\sigma_j = \{Y, \phi, \{b\}\}$. Define $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ by $f(a) = b$, $f(b) = a$, $f(c) = c$. A function f is (τ_i, τ_j)- σ_i-swg^* continuous which is not (τ_i, τ_j)- σ_i-α- generalized continuous function, since the inverse image of σ_i-closed set $\{a, b\}$ in Y is not (τ_i, τ_j)-α-generalized closed in X.

Example 5.5.28: Let (X, τ_i, τ_j) and (Y, σ_i, σ_j) be two bitopological spaces. Let $X = Y = \{a, b, c\}$ with the bitopologies $\tau_i = \{X, \phi, \{a\}\}$, $\tau_j = \{X, \phi, \{a, b\}\}$ and $\sigma_i = \{Y, \phi, \{a, c\}\}$, $\sigma_j = \{Y, \phi, \{c, \{a, c\}\}\}$. Define $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ by $f(a) = c$, $f(b) = b$, $f(c) = a$. A function f is (τ_i, τ_j)- σ_i-α- generalized continuous which is not (τ_i, τ_j)- σ_i-swg^*-continuous function, since the inverse image of σ_i-closed set $\{b\}$ in Y is not (τ_i, τ_j)-swg^*-closed in X.

Remark 5.5.29: (τ_i, τ_j)- σ_i- generalized α- continuous function and (τ_i, τ_j)- σ_i-swg^*-continuous function are independent.
Example 5.5.30: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X=Y= \{a, b, c\}\) with the bitopologies \(\tau_i=\{X, \phi, \{a\}\}\), \(\tau_j=\{X, \phi, \{c\}\}\) and \(\sigma_i=\{Y, \phi, \{b\}\}\), \(\sigma_j=\{Y, \phi, \{a, \{b, c\}\}\}\)\. Define \(f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) by \(f(a)=c, f(b)=b, f(c)=a\). A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-\(\text{swg}^*\)-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-generalized \(\alpha\)-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{a, c\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-generalized \(\alpha\)-closed in \(X\).

Example 5.5.31: Let \((X, \tau_i, \tau_j)\) and \((Y, \sigma_i, \sigma_j)\) be two bitopological spaces. Let \(X=Y= \{a, b, c\}\) with the bitopologies \(\tau_i=\{X, \phi, \{b, c\}\}\), \(\tau_j=\{X, \phi, \{b, c\}\}\) and \(\sigma_i=\{Y, \phi, \{a, b\}\}\), \(\sigma_j=\{Y, \phi, \{b, c\}, \{c\}\}\)\. Let \(f: (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)\) be defined by identity map. A function \(f\) is \((\tau_i, \tau_j)\)-\(\sigma_i\)-generalized \(\alpha\)-continuous which is not \((\tau_i, \tau_j)\)-\(\sigma_i\)-\(\text{swg}^*\)-continuous function, since the inverse image of \(\sigma_i\)-closed set \(\{c\}\) in \(Y\) is not \((\tau_i, \tau_j)\)-\(\text{swg}^*\)-closed in \(X\).
Remark 5.5.32: From the above results the following relation is obtained.

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-semi continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-semi generalized continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-generalized semi continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-semi weakly }g^*\text{-continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-pre-continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-}\alpha\text{-continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-}\alpha\text{-generalized continuous}\]

\[(\tau_i, \tau_j) \rightarrow \sigma_i\text{-generalized }\alpha\text{-continuous}\]
5.6 (τ_i, τ_j)-SEMI WEAKLY g*-STRONGLY CONTINUOUS FUNCTIONS AND (τ_i, τ_j)-SEMI WEAKLY g*-IRRESOLUTE FUNCTIONS

In this section (τ_i, τ_j)-semi weakly g*-strongly continuous functions and (τ_i, τ_j)-semi weakly g*-irresolute functions are introduced and some of their properties are investigated.

Definition 5.6.1: A function f : (X, τ_i, τ_j) → (Y, σ_i, σ_j) is called (τ_i, τ_j)-semi weakly g*-strongly-continuous (briefly (τ_i, τ_j)-swg*-s-continuous) if f⁻¹ (V) is (τ_i, τ_j)-semi weakly g*-strongly-closed in X for every σ_j-closed set V of Y.

Definition 5.6.2: A function f : (X, τ_i, τ_j) → (Y, σ_i, σ_j) is called (τ_i, τ_j)-semi weakly g*-strongly-irresolute (briefly (τ_i, τ_j)-swg*-s-irresolute) if f⁻¹ (V) is (τ_i, τ_j)-semi weakly g*-strongly-closed in X for every semi weakly g*-strongly-closed set V of Y.

Definition 5.6.3: A subset A of a bitopological space X is called (τ_i, τ_j)-semi weakly g*-closed set (briefly (τ_i, τ_j)-swg*-closed) if τ_j-gcl (A) ⊂ U whenever A ⊂ U and U is τ_i-semi open in X. If A ⊂ X is (τ_i, τ_j)-swg*-closed and (τ_j, τ_i)-swg*-closed, then it is said to be (τ_i, τ_j)-semi weakly g*-strongly closed (briefly (τ_i, τ_j)-swg*-s-closed) set.

Lemma 5.6.4: If a function f : (X, τ_i, τ_j) → (Y, σ_i, σ_j) is an τ_i-closed, then for each subset S ⊂ Y and each τ_i-open set U containing f⁻¹ (S), there is a σ_i-open set V containing S such that f⁻¹ (V) ⊂ U.
Proof: Let $S \subseteq Y$ and U is τ_i-open containing $f^{-1}(S)$, Put $V = Y - f(X - U)$. Then U is σ_i-open set in Y containing S. It follows that $f^{-1}(V) \subset U$.

Lemma 5.6.5: If a function $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ is surjective τ_j-continuous, then for every subset B of Y, τ_j-cl $(f^{-1}(B)) \subset f^{-1}(\tau_j$-cl$(B))$.

Proof: Let $x \in \tau_j$-cl$(f^{-1}(B))$. Suppose that V be τ_j-open set of Y containing $f(x)$, i.e. $f(x) \in V$, then $x \in f^{-1}(V)$. Since $f^{-1}(V)$ is τ_j-open of X, then $f^{-1}(V) \cap f^{-1}(B) \neq \emptyset$. This implies that $f^{-1}(V \cap B) \neq \emptyset$ and $V \cap B \neq \emptyset$. Thus $f(x) \in \tau_j$-cl(B) and $x \in f^{-1}(\tau_j$-cl$(B))$. This means $x \in f^{-1}(\tau_j$-cl$(B))$. Hence τ_j-cl$(f^{-1}(B)) \subset f^{-1}(\tau_j$-cl$(B))$.

Theorem 5.6.6: Let $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ be a function and f is (τ_i, τ_j)-semi weakly g^*-strongly continuous, then for each $x \in X$. Also σ_j-open set V containing $f(x)$, there is an (τ_i, τ_j)-swg*-strongly open set U containing x such that $f(U) \subset V$.

Proof: Let $x \in X$ and V be σ_j-open set containing $f(x)$. Then f is (τ_i, τ_j)-semi weakly g^*-strongly-continuous, so $f^{-1}(V)$ is (τ_i, τ_j)-semi weakly g^*-strongly-open set of X which containing X. If $U = f^{-1}(V)$ then $f(U) \subset V$.

Theorem 5.6.7: Let $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ be a function and for each $x \in X$. Also σ_i-open set V containing $f(x)$, there is an (τ_i, τ_j)-swg*-strongly open set U containing x such that $f(U) \subset V$, then $f((\tau_i, \tau_j)$-swg*-s-cl$(A)) \subset \tau_j$-cl$(f(A))$ for each subset A of X.

98
Proof: Let A be a subset of a bitopological space X and $f(x) \not\in \tau_j\text{-cl}(f(A))$, then there exists σ_j-open set V of Y containing $f(x)$ such that $V \cap f(A) = \emptyset$. Then each $x \in X$ and for each σ_j-open set V containing $f(x)$. There is an (τ_i, τ_j)-swg*-strongly open set U containing x such that $f(U) \subseteq V$. Hence $f(U) \cap f(A) = \emptyset$. Implies $U \cap A = \emptyset$. Consequently, $x \not\in (\tau_i, \tau_j)$-semi weakly g*-strongly cl(A) and $f(x) \not\in f((\tau_i, \tau_j)$-semi weakly g*-strongly -cl(A)). Implies $f ((\tau_i, \tau_j)$-swg*-s cl(A)) $\subset \tau_j$-cl(f(A)) for each subset A of X.

Theorem 5.6.8: Let $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ be a function and $f ((\tau_i, \tau_j)$-swg*-s-cl(A)) $\subset \tau_j$-cl(f(A)) for each subset A of X, then $((\tau_i, \tau_j)$-swg*-s-cl(f(A))) $\subset f^{-1}(\tau_j$-cl(B)) for each subset B of Y.

Proof: Let B be a subset of Y and $A=f^{-1}(B).$ Then $f(\tau_i, \tau_j)$ swg*-s cl(A)) $\subset \tau_j$-cl(f(A)) for each subset A of X. Therefore $((\tau_i, \tau_j)$-semi weakly g*-strongly-cl (f $^{-1}(B)))$ $\subset \tau_j$-cl (f(f $^{-1}(B))).$ Thus (τ_i, τ_j)-strongly semi weakly g*-cl(f $^{-1}(B))$ $\subset f^{-1}(\tau_j$-cl(B)).

Theorem 5.6.9: If $f : (X, \tau_i, \tau_j) \to (Y, \sigma_i, \sigma_j)$ is bijectives (τ_i, τ_j)-semi weakly g*-open and (τ_i, τ_j)-semi weakly g*-strongly -continuous, then f is (τ_i, τ_j)-semi weakly g*-strongly -irresolute.
Proof: Let V be (τ_i, τ_j)-semi weakly g^*-strongly closed set of Y and let $f^{-1}(V) \subseteq U$, where U be (τ_i, τ_j)-semi weakly g^*-open set. Clearly $V \subseteq f(U)$. Since $f(U)$ is (τ_i, τ_j)-semi weakly g^*-open and V is (τ_i, τ_j)-semi weakly g^*-strongly closed set in Y. Then $\tau_j\text{-cl}(V) \subseteq f(U)$ and $f^{-1}(\tau_j\text{-cl}(V)) \subseteq U$. Since f is (τ_i, τ_j)-semi weakly g^*-continuous and $\tau_j\text{-cl}(V)$ is σ_j-closed in Y, then $\tau_j\text{-cl}(f^{-1}(\tau_j\text{-cl}(V))) \subseteq U$. Hence $\tau_j\text{cl}(f^{-1}(V)) \subseteq U$. Therefore $f^{-1}(V)$ is (τ_i, τ_j)-semi weakly g^*-strongly closed in X. Hence f is (τ_i, τ_j)-semi weakly g^*-strongly irresolute.

Theorem 5.6.10: If $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is (τ_i, τ_j)-semi weakly g^*-irresolute and τ_j-closed, then every (τ_i, τ_j)-semi weakly g^*-strongly closed set A of X, $f(A)$ is (τ_i, τ_j)-semi weakly g^*-strongly closed set of Y.

Proof: Let A be an (τ_i, τ_j)-semi weakly g^*-strongly closed set. Suppose that $f(A) \subseteq U$, where U is an (τ_i, τ_j)-semi weakly g^*-open in Y. Then $A \subseteq f^{-1}(U)$ and $f^{-1}(U)$ is (τ_i, τ_j)-semi weakly g^*-open and f is (τ_i, τ_j)-semi weakly g^*-irresolute function. Since A is semi weakly g^*-strongly closed, $\tau_j\text{-cl}(A) \subseteq f^{-1}(U)$ and hence $f(\tau_j\text{-cl}(A)) \subseteq U$. Therefore $\tau_j\text{-cl}(f(A)) \subseteq \tau_j\text{-cl}(f(\tau_j\text{-cl}(A))) = f(\tau_j\text{-cl}(A)) \subseteq U$ as f is τ_j-closed. Hence $f(A)$ is (τ_i, τ_j)-semi weakly g^*-strongly closed set in Y.

Theorem 5.6.11: If $f : (X, \tau_i, \tau_j) \rightarrow (Y, \sigma_i, \sigma_j)$ is surjective, τ_j-closed and τ_j-continuous, then for every (τ_i, τ_j)-semi weakly g^*-strongly closed set B of Y, $f^{-1}(B)$ is (τ_i, τ_j)-semi weakly g^*-strongly closed set in X.

100
Proof: Let B be an (τ_i, τ_j)-semi weakly g^*-strongly closed subset of Y and $f^{-1}(B) \subset U$, where U is a τ_j-open set of X. As f is τ_j-closed and by lemma 5.6.4, there is a σ_j-open set V such that $B \subset V$ and $f^{-1}(V) \subset U$. Since B is (τ_i, τ_j)-semi weakly g^*-strongly closed set and $B \subset V$. Then τ_j-cl(B) $\subset V$. Hence $f^{-1}(\tau_j$-cl(B)) $\subset f^{-1}(V) \subset U$. By Lemma 5.6.5, τ_j-cl($f^{-1}(B)$) $\subset U$ and hence $f^{-1}(B)$ is (τ_i, τ_j)-semi weakly g^* - strongly closed set in X, since every τ_j-open set is (τ_i, τ_j)-semi weakly g^*-open set.
