# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>TITLE OF THE CHAPTER</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td></td>
<td>i</td>
</tr>
<tr>
<td>LIST OF SYMBOLS AND ABBREVIATIONS</td>
<td></td>
<td>ii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>iv-vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>vii</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

1.1. General Introduction 1
1.2. Magnetism 2-3
1.2.1. Ferromagnetism 2
1.2.2. Superparamagnetism 3
1.3. Fe₃O₄ (Magnetite) 7
1.4. Cyclodextrin 8
1.5. Applications of magnetic polymer nanocomposites 9-11
1.5.1. Environmental applications 9
1.5.2. Biomedical applications 10
1.6. Objectives 11

II. REVIEW OF LITERATURE

12-16

III. MATERIALS AND METHODOLOGY

17-26

3.1. Synthesis of super paramagnetic Fe₃O₄ nanoparticles 17
3.2. Synthesis of super paramagnetic iron oxide/β- Cyclodextrin nanocomposites 18
3.3. Characterization techniques 19-20
3.3.1. X-ray diffraction analysis 19
3.3.2. Fourier transform infrared spectroscopy 20
3.3.3. Scanning electron microscopy 20
3.3.4. Energy dispersive X-ray analysis 20
3.3.5. BET Studies 20
3.3.6. Transmission electron microscopy 20
3.3.7. Optical Studies 21-22
3.4. Magnetic Properties 22
3.4.1. Vibrating Sample Magnetometry (VSM) 22
3.4.2. Mossbauer Spectroscopy 23
3.5. Oil Removal 23
3.6. Removal of Malachite Green 24
3.7. Removal of Bisphenol A 25

IV. RESULTS AND DISCUSSION 27-53
4.1. Synthesis of super paramagnetic nanoparticles and nanocomposites 27-28
4.2. X-ray diffraction studies (XRD) 29-30
4.3. FTIR Studies 31
4.4. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis 32
4.5. BET Studies 33
4.6. Transmission Electron Microscopy (TEM) 34-35
4.7. UV-Visible and PL analysis 35
4.8. TGA analysis 37
4.9. Magnetic Study 37
4.9.1. VSM Study 37
4.9.2. Mossbauer Study 39
4.10. Oil-Spill Remediation 42
4.11. Dye Removal 44
4.12. Degradation of Bisphenol A 47
4.13 Degradation Pathway & Mechanistic Study 48
4.14 Recovery capacity and reusability 52

V. SUMMARY AND CONCLUSIONS 54

VI. REFERENCES 55-66

VII. APPENDIX
INSTRUMENT USED 67

VIII. PUBLICATION