<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 1.2.1.</td>
<td>Hysteresis loop of a ferromagnetic material</td>
<td>2</td>
</tr>
<tr>
<td>Fig. 1.2.2(a)</td>
<td>Super paramagnetic materials have very high saturation magnetization</td>
<td>3</td>
</tr>
<tr>
<td>Fig. 1.2.2(b)</td>
<td>Mechanism of Photocatalysis</td>
<td>7</td>
</tr>
<tr>
<td>Fig. 1.3(a), (b)</td>
<td>Crystal structure of Fe$_3$O$_4$</td>
<td>8</td>
</tr>
<tr>
<td>Fig. 3.2(a)</td>
<td>The separation process of β-CD modified Fe$_3$O$_4$ nanoparticles from suspension under an external magnetic field.</td>
<td>18</td>
</tr>
<tr>
<td>Fig. 3.2.5.</td>
<td>FEI Technai TEM F20</td>
<td>21</td>
</tr>
<tr>
<td>Fig. 3.3.1.</td>
<td>VSM (Microsense EV7)</td>
<td>22</td>
</tr>
<tr>
<td>Fig. 3.3.2.</td>
<td>Canberra S-100 Mossbauer Spectrometer</td>
<td>23</td>
</tr>
<tr>
<td>Fig. 4.2(a)</td>
<td>XRD pattern of Fe$_3$O$_4$ nanoparticles</td>
<td>29</td>
</tr>
<tr>
<td>Fig. 4.2(b)</td>
<td>XRD pattern of Fe$_3$O$_4$/β-CD nanocomposites</td>
<td>30</td>
</tr>
<tr>
<td>Fig. 4.3(a)</td>
<td>FTIR spectrum of Fe$_3$O$_4$ nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 4.3(b)</td>
<td>FTIR spectrum of Fe$_3$O$_4$ nanoparticles</td>
<td>31</td>
</tr>
<tr>
<td>Fig. 4.4(a)</td>
<td>SEM image of SPION</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 4.4(b)</td>
<td>SEM image of SPION/β-CD</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 4.4(c)</td>
<td>EDX pattern of SPION</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 4.4(d)</td>
<td>EDX pattern of SPION/β-CD</td>
<td>32</td>
</tr>
<tr>
<td>Fig. 4.5(a)</td>
<td>N$_2$ adsorption-desorption isotherms for SPION</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 4.5(b)</td>
<td>N$_2$ adsorption-desorption isotherms for SPION/β-CD</td>
<td>33</td>
</tr>
<tr>
<td>Fig. 4.6(a)</td>
<td>Low resolution TEM image of Fe$_3$O$_4$ nanoparticles</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 4.6(b)</td>
<td>High resolution TEM image of Fe$_3$O$_4$ nanoparticles</td>
<td>34</td>
</tr>
<tr>
<td>Fig. 4.6(c)</td>
<td>Low resolution TEM image of Fe$_3$O$_4$/β-CD</td>
<td>35</td>
</tr>
</tbody>
</table>
nanocomposites

Fig. 4.6(d) High resolution TEM image of Fe₃O₄/β-CD 35
Fig. 4.6(e) SAED pattern of Fe₃O₄ nanoparticles 35
Fig. 4.6(f) STEM image of Fe₃O₄ nanoparticles 35
Fig. 4.7(a) Tauc plots 36
Fig. 4.7(b) PL spectrum of SPION/β-CD. 36
Fig. 4.8 TGA curves 37
Fig. 4.9.1(a) Hysteresis loop of Fe₃O₄ nanoparticles 38
Fig. 4.9.1(b) Hysteresis loop of Fe₃O₄/β-CD nanocomposites 39
Fig. 4.9.2(a) Mossbauer spectra for Fe₃O₄ nano crystalline powder 40
Fig. 4.9.2(c) Mossbauer spectra for Fe₃O₄/β-cyclodextrin 41
Fig. 4.10(a) Oil separation using Fe₃O₄ nanoparticles 42
Fig. 4.10(b) Digital pictures of experimental setups for evaluating the reaction kinetics of oil-water separation 43
Fig. 4.10(c) Kinetics of oil-water separation using magnetic Fe₃O₄/β-CD nanocomposites 43
Fig. 4.10(d) Oil separation for SPION/β-CD via ethanol washing 43
Fig. 4.11(a) Percent removal of MG. 45
Fig. 4.11(b) Pseudo-first-order kinetics for degradation of MG 45
Fig. 4.11(c) Effect of pH on MG degradation 45
Fig. 4.12(a) Degradation of β-CD and SPION/β-CD under solar light 48
Fig. 4.12(b) Degradation of BPA under SPION, SPION/β-CD and SPION/β-CD +H₂O₂ system 48
Fig. 4.12(c) Kinetics plots for effect of radical scavenger t-BuOH on BPA degradation 48
Fig. 4.12(d) GC-MS of BPA solution after 30 minutes of illumination 48
Fig. 4.13(a) Possible mechanism for BPA degradation in presence of SPION/β-CD under solar light 51
Fig. 4.13(b) % TOC removal and % COD removal for BPA 51
degradation in presence of SPION/β-CD

| Fig. 4.14 (a) | Recyclability of SPION/β-CD for oil removal | 52 |
| Fig. 4.14 (b) | Reusability of SPION/β-CD for degradation of MG and BPA under solar illumination (SPION/ β-CD + solar) | 52 |