LIST OF FIGURES

Figure 1.1. The idealized layered structural illustration of LDHs. 5
Figure 1.2. Experimental set-up for the preparation of LDH materials by the coprecipitation method. 7
Figure 1.3. Scheme of anions exchange by the formation of a salt between an anionic and a cationic surfactant in LDH (DS=sodium dodecylsulfate, CTA-N-cetyl-N, N, N-trimethylammonium). 9
Figure 1.4. SEM images of LDH obtained under different conditions: (a) Mg₂Al-Cl formed under urea thermal decomposition; (b) Mg-Al-CO₃ formed by coprecipitation method at pH 10. 15
Figure 1.5. Simplified representation of the calcination and/or reduction process of LDHs. 19
Figure 1.6. Various biomolecule-LDH hybrids obtained by intercalation reaction (a) the pristine MgAl-LDH, (b) CMP-LDH hybrid, (c) AMP-LDH hybrid, (d) GMP-LDH hybrid, and (e) DNA-LDH hybrid. 21
Figure 2.1. Crystal structure of Brucite [Mg(OH)₂] and hydrotalcite in the ball and stick arrangement. 28
Figure 2.2. Structure of typical LDH in the octahedral layer mode. 28
Figure 2.3. (a) Stacking sequence in Hydrotalcite ([Mg₆Al₂(OH)₁₆]CO₃·4H₂O) with rhombohedral symmetry (b) position of interstitial atoms between the hydroxide layers. 35
Figure 2.4. Crystal structure of [Ca₂Al(OH)₆]Cl₂H₂O layered double hydroxides in R-3 group. 36
Figure 2.5. The structure of h-[LiAl₂(OH)₆]Cl·H₂O: (a) view of the unit cell and (b) view down the (001) direction of the unit cell. 37
Figure 4.10.1. The powder XRD patterns of (I) prepared LDHs, (II) calcined LDHs (calcinations done at 450°C) and (III) rehydrated calcined LDHs. 129-130
Figure 4.10.2. The powder XRD patterns of Clay (Nanomontmorillonite): pristine and calcined at different temperatures viz. 1000, 1200 & 1400°C. 131
Figure 4.10.3. The powder XRD patterns of Mg-Al LDH: pristine and calcined at different temperatures viz. 1000, 1200 &
Figure 4.10.4. The powder XRD patterns of composites of Mg-Al LDH and clay: pristine and calcined at different temperatures viz. 1000, 1200 & 1400°C.

Figure 4.10.5. The powder XRD patterns of composites of Ca-Al LDH and clay (I) uncalcined and (II) calcined at 1400°C.

Figure 4.11.1. FT-IR patterns of prepared LDHs.

Figure 4.11.2. FT-IR patterns of (A) Mg-Al LDH (B) Na-montmorillonite and (C) composite of Na-montmorillonite and Mg-Al LDH.

Figure 4.14.1. Formation of the “House of card” structure of clay-LDH composite gels and its consequent coating over solid preforms to form active metal oxides for suitable ‘Gas-Solid’ reactions.

Figure 4.14.2. Rheograms of clay-Ni-Al LDH composite gels at three different temperatures.

Figure 4.14.3. Rheograms of clay-Mg-Al LDH composite gels at three different temperatures.

Figure 4.14.4. Rheograms of different clay-Mg-Al LDH dispersions measured in Rheolab QC.

Figure 4.16.1. The TG-DTG-DTA curves of the prepared LDHs.

Figure 4.16.2. TG-DTG-DTA curves of Mg-Al LDH, Na-montmorillonite and the composite of Mg-Al LDH and Na-montmorillonite.

Figure 4.17.1a and 1b. The SEM image showing cubic spinel crystal dispersed in the alumina-silicate matrix after heating to 1400 °C and the corresponding EDXA pattern.

Figure 4.17.1c. The AFM image of the calcined composite of clay and Mg-Al LDH at 1400°C.

Figure 4.17.2. The SEM images of A. Uncoated support with voids of the dimension of about 30 μm; Coated support B. Surface View, and C. Edge View.

Figure 4.18.1. Mechanical strength of uncoated and coated green and calcined α-alumina tubes (coating done with composite gel of clay-Mg-Al LDH).

Figure 4.18.2. Mechanical strength of uncoated and coated green and calcined α-alumina tubes (coating done with composite gel of clay-Ca-Al LDH).

Figure 4.18.3. Tensile extension against applied load A: uncoated calcined alumina tubes, B: coated calcined alumina tubes.

Figure 4.19.1a. The different reactors designed for ‘Gas-Solid’ reaction study (I) The Stainless Steel Reactor (II) Pictures of coated honeycombs present inside the SS tube (III) The quartz tube reactor.
Figure 4.19.1b. Specific Decomposition Efficiencies (SDE) vs Type of Active Material Used for N$_2$O decomposition study.

Figure 4.19.1c. (I) Chromatogram of product gas after passing through powdered LDH support (II) Chromatogram of product gas after passing through composite powder catalyst (detected in TCD) & (III) Chromatogram of the product gas after passing through composite catalyst coated over honeycomb monolithic supports (detected in ECD).

Figure 4.19.1d. The powder PXRD pattern of (I) pre-calcined Na-montmorillonite clay after passing N$_2$O gas (II) pre-calcined Ni-Al LDH before passing N$_2$O gas (III) pre-calcined Ni-Al LDH after passing N$_2$O gas & (IV) pre-calcined composite of Na-montmorillonite + Ni-Al LDH after passing N$_2$O gas.

Figure 4.19.1e. (A)SEM images of surface view of the coats of composites over honeycomb & 5(B) EDXA pattern of coats of composites over honeycomb surfaces.

Figure 4.19.2a. The Specific Desulfurization Efficiencies (SDE) vs Type of active material used.

Figure 4.19.2a.2. Stacked powder XRD patterns of the composite of clay & Ca-Al hydrotalcite.

Figure 4.19.2a.3. The SEM images of coats of composites over honeycomb surfaces (A) cluster of metal nanosheets (B) edge view.

Figure 4.19.2a.4. The EDXA pattern of coats of composites over honeycomb surfaces.

Figure 4.19.2b. The Specific Desulfurization Efficiencies (SDE) versus Type of active material used.

Figure 4.19.2b.1. Stacked Powder XRD patterns of the (I)-Zn-Al hydrotalcite after H$_2$S adsorption.

Figure 4.19.2b.2. The powder XRD pattern of the calcined composite of clay & Mg-Al hydrotalcite before (I) and after SO$_2$ adsorption (II) as well as after regeneration of the adsorbent (III).

Figure 5.1.2. Scheme for the synthesis of silica supported Ni-Al LDH

Figure 5.1.3. Scheme for the synthesis of silica supported Mg-Al LDH

Figure 5.12.1. The powder XRD patterns of unsupported and supported LDH at different silica to LDH ratios.

Figure 5.12.2. The powder XRD patterns of ‘sol-gel’ derived uncalcined unsupported Mg-Al LDH its coprecipitation analogue & ‘sol-gel’ derived supported Mg-Al LDH with different SiO$_2$: LDH ratios.

Figure 5.12.3. The powder XRD patterns of ‘sol-gel’ derived
Unsupported & silica supported Mg-Al LDH (calcinations done at 450°C).

Figure 5.12.4. The powder XRD patterns of ‘sol-gel’ derived unsupported & silica supported Mg(OH)₂ LDH without Al³⁺ substitution.

Figure 5.13.1. The FT-IR patterns of some ‘sol-gel’ derived experimental samples (Ni-Al system)

Figure 5.13.2. The FT-IR patterns of some experimental samples (Mg-Al system)

Figure 5.14.1. The DTA-DTG-TGA patterns of composites at different SiO₂: Ni-Al LDH ratios

Figure 5.14.2. The DTA-DTG-TGA patterns of composites at different SiO₂: Mg-Al LDH ratios.

Figure 5.14.3. The DTA-DTG-TGA patterns of composites at different SiO₂: Mg(OH)₂LDH (without Al³⁺ substitution) ratios.

Figure 5.16.2a. The particle Size Analysis histograms of [(I)-uncalcined Cp Ni-Al LDH, (II)- uncalcined Sg Ni-Al LDH.

Figure 5.16.2b. The particle Size Analysis histograms of [silica supported Ni-Al LDH (I) SiO₂: LDH=1:1 and (II) SiO₂: LDH=1:4].

Figure 5.16.2c. The particle Size Analysis histograms of [(I)-uncalcined Cp Mg-Al LDH, (II)-uncalcined Sg Mg-Al LDH.

Figure 5.16.2d. The particle Size Analysis histograms of [(I), (II)-calcined Cp Mg-Al LDH & Sg Mg-Al LDH, calcination done at 450°C].

Figure 5.17.1. The rheograms of ‘sol-gel’ derived (I) unsupported Ni-Al LDH and (II) silica supported LDH at SiO₂: LDH=1:1.

Figure 5.17.2. The rheograms of ‘sol-gel’ derived Mg-Al LDH (i)-unsupported Sg Mg-Al LDH; (ii), (iii) & (iv): silica supported Sg Mg-Al LDH at SiO₂: LDH ratio 1:4, 1:2 & 4:1 respectively.

Figure 5.19.1. (A) Silica supported Ni-Al LDH (SiO₂: LDH=1:1), (B) its SEM pattern after coating upon honeycomb preform and calcination at 450°C.

Figure 5.19.2a. SEM pictures of unsupported Mg-Al LDH (I) uncalcined & (II) calcined at 450°C.

Figure 5.19.2b.1. (I) SEM pictures of coated calcined α-alumina preform: coating done with silica supported Mg-Al LDH at silica to LDH ratio 1:1, (II) corresponding EDXA pattern.

Figure 5.19.2b.2. (I) SEM picture of coated calcined α-alumina preform: coating done with silica supported Mg-Al LDH at silica to LDH ratio 3:1, (II) its corresponding EDXA pattern.

Figure 5.19.3. (I) and (II) SEM images of powder silica supported Mg-Al LDH at SiO₂: LDH=1:1, uncalcined; (III) its corresponding
Figure 5.19.4. EDXA pattern.

Figure 5.20. (I) Bar Diagram of N₂O Specific Decomposition Efficiency (SDE) over powdered unsupported & supported Si Mg-Al LDH catalysts pre-calcined at 450°C at low as well as high GHSV of 11930 and 35790 hr⁻¹ respectively. A, B - unsupported catalyst; C, D- supported Si₂: LDH (1:4); E, F- supported SiO₂: LDH (1:1) after 60 min reaction time; (II) the chromatograms for the 'Gas-Solid' reactions carried out with unsupported Si Mg-Al LDH at 150:150 cm³/min flow rates of the reactant gas mixtures).

Figure 5.21. Gas cell FT-IR patterns of the N₂O feed & product gases passed over silica supported 'sol-gel' derived composite catalyst at different temperatures.

Figure 6.9. Figure showing the synthesis of hybrid gel of acrylamide monomer and LDHs under sonochemical activation and its novel coat over solid preform.

Figure 6.10. DSC pattern of hybrid gel comprising of acrylamide and Zn-Cr LDH.

Figure 6.11a. The DSC patterns of polymer derived from the interlayers of the (A) Zn-Cr-acrylamide hybrid composite, (B) Ni-Al-acrylamide hybrid composite.

Figure 6.11b. The TG-DTA-DTG patterns of (I) Hybrid gel of Ni-Al LDH, (II) Hybrid gel of Zn-Cr LDH, (III) Polymer extracted from the hybrid gel (I) and (IV) Polymer extracted from the hybrid gel (II).

Figure 6.12. PXRD patterns of Ni-Al and Zn-Cr LDH-acrylamide hybrid composite gels.

Figure 6.13. FT-IR patterns of A-Zn-Cr LDH, B- Ni-Al LDH, C-PAM-Zn-Cr LDH hybrid composite, D-PAM-Ni-Al LDH hybrid composite, E- PAM extracted from the composite gels.

Figure 6.14. Rheogram of (I) Acrylamide-Ni-Al LDH hybrid composite & (II) Acrylamide-Zn-Cr LDH.

Figure 6.15. Conventional vertical jar test of the prepared hybrid gels.

Figure 6.16. Close-up view of dip-coating (A) Zn-Cr LDH-acrylamide and (B) Ni-Al LDH-acrylamide hybrid gels over macroporous α-alumina surface.

Figure 6.17. The SEM images of (A) Ni-Al LDH prepared by coprecipitation method (B) acrylamide-Ni-Al LDH hybrid composite. (C) Zn-Cr LDH prepared by oxide hydrolysis (D) acrylamide-Zn-Cr LDH hybrid composite (E) coat of acrylamide-Ni-Al hybrid composite over α-alumina.
preform and (F) coat of acrylamide-Zn-Cr hybrid composite over α-alumina preform.

Figure 6.17. The TEM images of (G) polyacrylamide-Ni-Al LDH composite (H) polyacrylamide-Zn-Cr LDH composite.

Figure 6.18. XPS patterns of (a & b) Ni-Al LDH-acrylamide (c & d) Zn-Cr LDH-acrylamide hybrid gels.