List of Figures

1. Figure 1.1: Structure of the human heart with its various components.

2. Figure 1.2: Blood vessel with cellular components.

3. Figure 1.3: Atherosclerosis or arterial stenosis.

4. Figure 1.4: Catheter with its various components.

5. Figure 1.5: Arterial catheters (Seldinger technique).

6. Figure 1.6: Arterial catheter (Punktion technique).

7. Figure 3.1: Schematic diagram of an arterial segment with multi-stenoses.

8. Figure 3.2: Variation of axial velocity with radial distance for different slip velocities and $C$ for $\alpha=1-\sqrt{3}/2$.

9. Figure 3.3: Variation of axial velocity with radial distance for different slip velocities and catheter radius for $\alpha=1/2$.

10. Figure 3.4: Variation of axial velocity with radial distance for different viscosities and stenosis size for $\alpha=1-\sqrt{3}/2$.

11. Figure 3.5: Variation of flow rate with axial distance for different values of catheter radius for $\alpha=1-\sqrt{3}/2$, $\bar{u}_r = 0.05$.

12. Figure 3.6: Variation of flow rate with axial distance for different values of viscosity and slip velocity for $\alpha=1-\sqrt{3}/2$.

13. Figure 3.7: Variation of flow rate with axial distance for different values of stenosis size and slip velocity for $kR_0 = 0.1$.

14. Figure 3.8: Variation of pressure gradient with axial distance for different values of $Q$ and slip velocities for $\alpha=1-\sqrt{3}/2$.

15. Figure 3.9: Variation of pressure gradient with axial distance for different values of stenosis size and slip velocities.
16 Figure 3.10: Variation of pressure gradient with axial distance for different values of shear viscosity and slip velocities for $\alpha=1-\sqrt{3}/2$.

17 Figure 3.11: Variation of wall shear stress with axial distance for different values of stenosis size and slip velocities.

18 Figure 3.12: Variation of wall shear stress with axial distance for different values of pressure gradient and slip velocities for $\alpha=1-1/\sqrt{2}$.

19 Figure 3.13: Variation of apparent viscosity with axial distance for different values of catheter radius and slip velocities for $\alpha=1-1/\sqrt{2}$.

20 Figure 3.14: Variation of apparent viscosity with axial distance for different values of pressure gradient and shear viscosities for $\alpha=1/2$.

21 Figure 3.15: Variation of apparent viscosity with axial distance for different values of stenosis size and slip velocities.

22 Figure 3.16: Variation of resistance to flow with different stenosis size and slip velocity.

23 Figure 3.17: Variation of resistance to flow with different catheter radius size and slip velocity for $\alpha=1-1/\sqrt{2}$.

24 Figure 3.18: Variation of resistance to flow with different shear viscosity and slip velocity for $\alpha=1-1/\sqrt{2}$.

25 Figure 4.1: Schematic diagram of a catheterized artery with axially non-symmetric stenosis.

26 Figure 4.2: Variation of axial velocity with radial distance for different values of slip velocity and catheter radius for $m=2$.

27 Figure 4.3: Variation of axial velocity with radial distance for different values of slip velocity and yield stress for $m=2$.

28 Figure 4.4: Variation of axial velocity with radial distance for different values of slip velocity and stenosis shape parameter $m$. 
29  **Figure 4.5:** Variation of flow rate with axial distance for different values of slip velocity and yield stress for $m=2$.

30  **Figure 4.6:** Variation of flow rate with axial distance for different values of slip velocity and catheter radius for $m=2$.

31  **Figure 4.7:** Variation of flow rate with axial distance for different values of slip velocity and stenosis size for $m=2$.

32  **Figure 4.8:** Variation of pressure gradient with axial distance for different values of catheter radius for $m=2$ and $\delta=1-\sqrt{3}/2$.

33  **Figure 4.9:** Variation of pressure gradient with axial distance for different values of yield stress for $m=2$ and $\delta=1-\sqrt{3}/2$.

34  **Figure 4.10:** Variation of pressure gradient with axial distance for different values of stenosis size for $m=2$.

35  **Figure 4.11:** Variation wall shear stress with catheter radius for different values of stenosis shape parameter and slip velocity for $\delta=1-\sqrt{3}/2$.

36  **Figure 4.12:** Variation wall shear stress with axial distance for different values of stenosis shape parameter and slip velocity for $\delta=1-\sqrt{3}/2$.

37  **Figure 4.13:** Variation wall shear stress with axial distance for different values of stenosis size and slip velocity for $m=2$.

38  **Figure 4.14:** Variation effective viscosity with catheter radius for different values of yield stress and stenosis size for $m=2$.

39  **Figure 4.15:** Variation effective viscosity with stenosis size for different values of stenosis shape parameter for $R_t=0.1$.

40  **Figure 4.16:** Variation effective viscosity with axial distance for different values of catheter radius and slip velocity for $\delta=1-\sqrt{3}/2$ and $m=2$.

41  **Figure 5.1:** Flow geometry and coordinate system.
42 **Figure 5.2:** Variation of axial velocity with radial distance for different values of yield stress and slip velocity for $\delta=1/2$.

43 **Figure 5.3:** Variation of axial velocity with radial distance for different values of fluid behaviour index $n$ and slip velocity for $\delta=1/2$.

44 **Figure 5.4:** Variation of axial velocity with radial distance for different values of stenosis size and slip velocity for $n=1$.

45 **Figure 5.5:** Variation of flow rate with axial distance for different values of slip velocity and stenosis size.

46 **Figure 5.6:** Variation of flow rate with axial distance for different values of yield stress for $\delta=1-\sqrt{3}/2$.

47 **Figure 5.7:** Variation of flow rate with axial distance for different values of fluid viscosity and slip velocity for $\delta=1-\sqrt{3}/2$.

48 **Figure 5.8:** Variation of wall shear stress with axial distance for different values of fluid behavior index and slip velocity for $\delta=1-\sqrt{3}/2$.

49 **Figure 5.9:** Variation of wall shear stress with axial distance for different values of yield stress and for $\delta=1-\sqrt{3}/2$.

50 **Figure 5.10:** Variation of wall shear stress with axial distance for different values of stenosis size and slip velocity for $\tau_w=0.01$.

51 **Figure 5.11:** Variation of pressure gradient with axial distance for different values of stenosis size and slip velocity for $n=1$.

52 **Figure 5.12:** Variation of pressure gradient with axial distance for different values of fluid viscosity and slip velocity for $\delta=1-\sqrt{3}/2$.

53 **Figure 5.13:** Variation of apparent viscosity with axial distance for different values of yield stress and slip velocity for $\delta=1-\sqrt{3}/2$.

54 **Figure 5.14:** Variation of apparent viscosity with axial distance for different values of stenosis size and slip velocity for $n=1$.

55 **Figure 5.15:** Variation of apparent viscosity with axial distance for different values of fluid viscosity for $\delta=1-\sqrt{3}/2$. 

Figure 5.16: Variation of resistance to flow with stenosis size for different values of fluid behavior index n and slip velocity.

Figure 5.17: Variation of resistance to flow with yield stress for different values of slip velocity for $\delta=0.1$.

Figure 6.1: Geometry of an inclined artery with non-axisymmetric stenosis.

Figure 6.2: Variation of axial velocity with radial distance for different values of slip velocity, yield stress and inclination for $m=2$.

Figure 6.3: Variation of axial velocity with radial distance for different values of slip velocity, body acceleration and g for $m=2$.

Figure 6.4: Variation of axial velocity with radial distance for different values of time t and stenosis height for $m=2$.

Figure 6.5: Variation of flow rate with pressure gradient for different values of body acceleration, slip velocity and inclination for $m=2$.

Figure 6.6: Variation of flow rate with yield stress for different values of g, slip velocity for $m=2$.

Figure 6.7: Variation of flow rate with stenosis shape parameter for different values of body acceleration and inclination $\psi$.

Figure 6.8: Variation of flow rate with axial distance for different values of stenosis shape parameter and stenosis height.

Figure 6.9: Variation of wall shear stress with body acceleration for different values of stenosis shape and inclination $\psi$.

Figure 6.10: Variation of wall shear stress with yield stress for different values of inclination $\psi$ for $m=2$.

Figure 6.11: Variation of wall shear stress with axial distance for different values of stenosis shape parameter m and stenosis height.
69 Figure 6.12: Variation of effective viscosity with body acceleration for different values of slip velocity and inclination $\psi$.

70 Figure 6.13: Variation of effective viscosity with stenosis height for different values of slip velocity and inclination $\psi$ for $m=2$.

71 Figure 6.14: Variation of effective viscosity with stenosis shape parameter for different values of g and yield stress for $\psi=15^0$.

72 Figure 6.15: Variation of resistance to flow with stenosis height for different values of stenosis shape parameter $m$ and inclination $\psi$ for $B=1$ and $u_s=0.05$.

73 Figure 6.16: Variation of resistance to flow with stenosis height for different values of body acceleration and slip velocity for $m=2$ and $\psi=15^0$.

74 Figure 6.17: Variation of resistance to flow with yield stress for different values of slip velocity for $m=2$ and $\psi=15^0$.

75 Figure 7.1: Schematic diagram of an arterial segment with multi-stenoses.

76 Figure 7.2: Variation of axial velocity with radial distance for different values of pressure gradient and slip velocity for $\delta_1=\delta_2=1/2$.

77 Figure 7.3: Variation of axial velocity with radial distance for different values of shear viscosity for $\delta_1=\delta_2=1/2$.

78 Figure 7.4: Variation of flow rate with axial distance for different values of slip velocity and shear viscosity for $\delta_1=\delta_2=1/2$.

79 Figure 7.5: Variation of flow rate with axial distance for different values of pressure gradient $C$ for $\delta_1=\delta_2=1/2$.

80 Figure 7.6: Variation of wall shear stress with axial distance for different values of both stenoses size for $C=0.95$.

81 Figure 7.7: Variation of wall shear stress with axial distance for different values of $C$ for $\delta_1=\delta_2=1/2$. 
Figure 7.8: Variation of apparent viscosity with axial distance for different values of stenoses size.

Figure 7.9: Variation of apparent viscosity with pressure gradient for different values of shear viscosity and slip velocity for $\delta_1 = \delta_2 = 1/2$.

Figure 7.10: Variation of pressure gradient with axial distance for different values of shear viscosity for $\delta_1 = \delta_2 = 1/2$.

Figure 7.11: Variation of pressure gradient with axial distance for different values of stenoses height.