LIST OF FIGURES.

Figure I-1. Schematic representation of stages at which gene expression can be regulated. The molecules involved in regulation of different genes at each stage may not be same

Figure I-2. Types of regulatory regions around genes coding for proteins (mRNAs), tRNAs and rRNAs

Figure I-3. A crude schematic representation of testis structure and male germ cell types within it

Figure II-1. Major components of the biocuration system and the connections between them

Figure II-2. A snapshot of the registration form for uploading the biocurated data

Figure II-3. A snapshot of the web page to login into the form to upload biocurated data

Figure II-4. A snapshot of the web interface to access processed data (either obtained from GEO/ArrayExpress or generated through in-house processing). Specific experiment identifier from GEO/ArrayExpress can be used to search data, and hybridizations corresponding to same tissue and condition can be merged for gene-list preparation

Figure II-5. A snapshot of the web page to visualize the details of multiple processed data before merging and generating a gene-list

Figure II-6. A snapshot of a gene-list produced after merging processed data

Figure II-7. A snapshot of the form to upload the biocurated information

Figure II-8. Sequence of display of hierarchically connected drop down menus corresponding to sample conditions

Figure II-9. A snapshot of the web interface for editing/validating uploaded information

Figure II-10. A snapshot of the edit form showing uploaded information in a tabular format

Figure II-11. Snapshots illustrating the process of including new options into specific drop down menus in the form

Figure II-12. Blueprint of controlled vocabulary implemented through hierarchically connected drop down menus

Figure II-13. The process of gene identifier conversion before implementing meta-analysis method

Figure II-14. Illustration of reliability scoring implementation

Figure II-15. Overall flow of information in MGEx-Tdb

Figure II-16. Representation of the MGEx-Tdb database schema

Figure II-17. A snapshot of the home page of MGEx-Tdb, showing two main search modes

Figure II-18. A snapshot of the search mode to obtain expression profile of genes in specific testicular conditions

Figure II-19. An illustration of inactivation of options under ‘Cell type’ from drop-down menu, in a case where Homo sapiens was selected

Figure II-20. An illustration of inactivation of options under ‘Condition’ from drop-down menu, in a case where Homo sapiens and Testis were selected

Figure II-21. A snapshot of MGEx-Tdb, showing the option to search database using gene name(s)

Figure II-22. A snapshot of the result page of MGEx-Tdb listing genes associated with adult normal human testis

Gene related information can be obtained by clicking on the hyperlinked gene symbol within the table

Figure II-23. A snapshot of the result page showing links to different gene associated information

Figure II-24. A snapshot of the result page showing gene information, obtained from NCBI gene

Figure II-25. A snapshot of the result page showing transcript information

Figure II-26. A snapshot of the result page showing protein information

Figure II-27. A snapshot of the result page showing the expression information of the gene in different testicular conditions
Figure II-28. A snapshot of the result page showing identical and partial matches found when the database was queried with term “ACRV1”.

Figure III-1. Comparison of the new ubiquitous gene sets, derived using the novel meta-analysis method, with the previously reported ubiquitous gene sets.

Figure III-2. Comparison of the new testis-specific gene sets, derived using the novel meta-analysis method, with the previously reported testis specific gene sets.

Figure III-3. Agarose gel electrophoretic analysis of RT-PCR product where the template was SMO from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-4. Agarose gel electrophoretic analysis of RT-PCR product where the template was RFXANK from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-5. Agarose gel electrophoretic analysis of RT-PCR product where the template was CDK5 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-6. Agarose gel electrophoretic analysis of RT-PCR product where the template was DCTPP1 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-7. Agarose gel electrophoretic analysis of RT-PCR product where the template was NINJ2 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-8. Agarose gel electrophoretic analysis of RT-PCR product where the template was PLEK2 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-9. Agarose gel electrophoretic analysis of RT-PCR product where the template was ARHAGAP10 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-10. Agarose gel electrophoretic analysis of RT-PCR product where the template was RERGL from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-11. Agarose gel electrophoretic analysis of RT-PCR product where the template was FETUB from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-12. Agarose gel electrophoretic analysis of RT-PCR product where the template was CYP2C9 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (7).

Figure III-13. Agarose gel electrophoretic analysis of RT-PCR product where the template was SLAMF1 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (6).

Figure III-14. Agarose gel electrophoretic analysis of RT-PCR product where the template was GIT1 from various types of testis samples, viz. normal (1), varicocele (1) and NOA (6).

Figure III-15. Variations in the extent of agreement between meta-analysis results and in-house RNA-seq data for ‘transcribed’ genes.

Figure III-16. Variations in the extent of agreement between meta-analysis results and in-house RNA-seq data for ‘not-detected’ genes.

Figure IV-1. Work flow of the MotDet tool.

Figure IV-20. Schematic representation of workflow of promoter analysis module.

Figure IV-31. Schematic representation of workflow of promoter prediction module.

Figure IV-42. Snapshots of IMPAT showing its usage for the promoter prediction.

Figure IV-53. Snapshots of IMPAT showing its usage for the promoter prediction.