LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Description</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Major sources of plant nutrients.</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>Model for improved plant nutrient use efficiency with inoculants.</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>The biofertilizer hypothesis for the soil–plant nitrogen (N) cycle.</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>The plant-soil N cycle and pathways for N transformation mediated by physiological processes.</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>Structure and regulation of the Nitrogenase enzyme system inherent in N₂-fixing bacteria in the process of dinitrogen fixation.</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Mechanism of dinitrogen fixation by the Nitrogenase enzyme system.</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Regulatory mechanism of dinitrogen fixation by the Nitrogenase enzyme system in free-living N₂-fixing bacteria.</td>
<td>23</td>
</tr>
<tr>
<td>8</td>
<td>Diagrammatic representation of diazotrophic systems.</td>
<td>25</td>
</tr>
<tr>
<td>9</td>
<td>Representation of wetland rice field ecosystem.</td>
<td>31</td>
</tr>
<tr>
<td>10</td>
<td>Cyclic rRNA-approach. Schematic representation of the different steps used for identification and in-situ localization of free-living or associative/endophytic N₂-fixing bacteria.</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>16S rDNA phylogenetic tree of Azospirillum spp. and related β-Proteobacteria.</td>
<td>54</td>
</tr>
<tr>
<td>12</td>
<td>Plant growth promotion mechanisms (positive and negative effects) associated with soil and rhizosphere (PGPR) microorganisms.</td>
<td>56</td>
</tr>
<tr>
<td>13</td>
<td>Map showing geographical location of Southern Assam (Barak Valley).</td>
<td>61</td>
</tr>
<tr>
<td>14</td>
<td>Monthwise average rainfall (mm) of the three districts of Southern Assam during last 5 years (2005-2009).</td>
<td>62</td>
</tr>
<tr>
<td>15</td>
<td>Monthwise average maximum and minimum temperature (°C) of the three districts of Southern Assam during last five years (2005-2009).</td>
<td>63</td>
</tr>
<tr>
<td>16</td>
<td>Monthwise average maximum and minimum relative humidity (%) of the three districts of Southern Assam during last five years (2005-2009).</td>
<td>63</td>
</tr>
<tr>
<td>17</td>
<td>Map showing the sampling sites (agriculture blocks) of the three districts of Southern Assam.</td>
<td>66</td>
</tr>
<tr>
<td>18</td>
<td>Area coverage of rice agro-ecosystems of South Assam.</td>
<td>71</td>
</tr>
<tr>
<td>19</td>
<td>Annual rice production of the three districts of South Assam.</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>Variation of soil pH in the rice agro-ecosystems of the three districts of South Assam.</td>
<td>75</td>
</tr>
<tr>
<td>21</td>
<td>Soil texture of rice agro-ecosystems of Cachar district.</td>
<td>75</td>
</tr>
<tr>
<td>22</td>
<td>Soil texture of rice agro-ecosystems of Karimganj district.</td>
<td>76</td>
</tr>
<tr>
<td>23</td>
<td>Soil texture of rice agro-ecosystems of Hailakandi district.</td>
<td>76</td>
</tr>
</tbody>
</table>
FIGURE 24: MC of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 25: WHC of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 26: EC of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 27: Total org. C content of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 28: N-content of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 29: Phosphorus content of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 30: Potassium content of soil of the rice agro-ecosystems in the three districts of South Assam.

FIGURE 31: Variation of bacterial count in rice agro-ecosystems of South Assam.

FIGURE 32: Variation of actinomycetes count in rice agro-ecosystems of South Assam.

FIGURE 33: Variation of fungal count in rice agro-ecosystems of South Assam.

FIGURE 34: Seasonal variation of diazotroph count in the lowland rice agro-ecosystems of Cachar district.

FIGURE 35: Seasonal variation of diazotroph count in the lowland rice agro-ecosystems of Karimganj district.

FIGURE 36: Seasonal variation of diazotroph count in the lowland rice agro-ecosystems of Hailakandi district.

FIGURE 37: Scattered diagram between Azotobacter population and soil pH.

FIGURE 38: Scattered diagram between Azospirillum population and soil pH.

FIGURE 39: Scattered diagram between Beijerinckia population and soil pH.

FIGURE 40: Scattered diagram between Burkholderia population and soil pH.

FIGURE 41: Scattered diagram between Gluconacetobacter population and soil pH.

FIGURE 42: Scattered diagram between Acinetobacter population and soil pH.

FIGURE 43: Scattered diagram between Derxia population and soil pH.

FIGURE 44: Scattered diagram between Bacillus population and soil pH.

FIGURE 45: Scattered diagram between Pseudomonas population and soil pH.

FIGURE 46: Scatter diagram between soil N-content and Azotobacter population.

FIGURE 47: Scatter diagram between soil N-content and Azospirillum population.

FIGURE 48: Scatter diagram between soil N-content and Beijerinckia population.

FIGURE 49: Scatter diagram between soil N-content and Burkholderia population.

FIGURE 50: Scatter diagram between soil N-content and Gluconacetobacter population.

FIGURE 51: Scatter diagram between soil N-content and Acinetobacter population.

FIGURE 52: Scatter diagram between soil N-content and Derxia population.

FIGURE 53: Scatter diagram between soil N-content and Bacillus population.
FIGURE 54: Scatter diagram between soil N-content and *Pseudomonas* population.

FIGURE 55: Acetylene reduction activity of isolated diazotroph strains.

FIGURE 56: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Azotobacter chroococcum*
SDSA-112/2, (B) 16S rDNA amplicon, lane 1 for marker 500bp ladder and lane 2
for *Azotobacter chroococcum* SDSA-112/2.

FIGURE 57: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the
position of *Azotobacter chroococcum* strain SDSA-112/2 (sample 1) and other
related strains of the family Pseudomonadaceae.

FIGURE 58: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Azospirillum amazonense*
SDSA-114/1, (B) 16S rDNA amplicon, lane 1 for *Azospirillum amazonense*
SDSA-114/1 and lane 2 for marker 500bp ladder.

FIGURE 59: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the
position of *Azospirillum amazonense* strain SDSA-114/1 (S000127672) and other
related strains of the family Rhodospirillaceae.

FIGURE 60: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Beijerinckia indica*
SDSA-130/2, (B) 16S rDNA amplicon, lane 1 for marker 500bp ladder and lane 2
for *Beijerinckia indica* SDSA-130/2.

FIGURE 61: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the
position of *Beijerinckia indica* strain SDSA-130/2 (S000007501) and other related
strains of the class α-proteobacteria.

FIGURE 62: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Burkholderia caribensis*
SDSA-110/1, (B) 16S rDNA amplicon, lane 1 for marker 500bp ladder 1, lane 2 for
marker 500bp ladder 2 and lane 3 for *Burkholderia caribensis* SDSA-110/1.

FIGURE 63: 16S rDNA nucleotide sequence generated by sequencing machine for *Burkholderia caribensis* strain SDSA-110/1: (A) Reverse primer sequence, (B) Forward primer
sequence.

FIGURE 64: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the
position of *Burkholderia caribensis* strain SDSA-110/1 (VH101_PEZ016_FP.fasta)
and other related strains of the family Burkholderiaceae.

FIGURE 65: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Gluconacetobacter liquefaciens* SDSA-128/1, (B) 16S rDNA amplicon, lane 1 for *Gluconacetobacter liquefaciens* SDSA-128/1 and lane 2 for marker 500bp ladder.
FIGURE 66: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the position of *Gluconacetobacter liquefaciens* strain SDSA-I28/1 (VII101_PEZ015_FP.fasta) and other related strains of the family Acetobacteraceae.

FIGURE 67: Electrophoregram (1% agarose gel) of genomic DNA and the 16S rDNA amplicon:
(A) Genomic DNA, lane 1 for λ DNA and lane 2 for *Acinetobacter johnsonii* SDSA-I19/1,
(B) 16S rDNA amplicon, lane 1 for *Acinetobacter johnsonii* SDSA-I19/1 and lane 2 for marker 500bp ladder.

FIGURE 68: Phylogenetic tree based on 16S rDNA gene sequence comparison showing the position of *Acinetobacter johnsonii* strain SDSA-I19/1 (VIII10_PEZ014_SpecificF.fasta) and other related strains of the family Moraxellaceae.

FIGURE 69: Alignment of 16S rDNA gene sequence of the diazotroph strains.

FIGURE 70: Sequence similarity of the diazotroph strains.

FIGURE 71: The cladogram showing a distant relationship among the group of four diazotroph strains clustered above and two diazotrophs strains SDSA-I10/1 GU372342, SDSA-I28/1 GU372344.

FIGURE 72: Evolutionary relationship of six diazotroph strains using Minimum Evolution method.

FIGURE 73: Evolutionary relationship of diazotroph strains using Maximum Parsimony method.

FIGURE 74: Evolutionary relationship of diazotroph strains using Neighbor-Joining method.

FIGURE 75: Maximum parsimony tree showing the relationships among 16S rDNA gene sequences of diazotroph strains and the most similar sequences retrieved from databases.

FIGURE 76: Population of diazotroph strains in the rhizosphere of autumn (ahu) rice cv. IR-36 at different growth stages.

FIGURE 77: Population of diazotroph strains in the rhizosphere of winter (sali) rice cv. Ranjit at different growth stages.

FIGURE 78: Nitrogenase activity of diazotroph strains in association with rhizosphere soil of autumn and winter rice grown under field conditions 60 after days of transplantation.

FIGURE 79: Scattered diagram between nitrogenase activity and population of diazotrophs in the rhizosphere soil.

FIGURE 80: Scattered diagram between plant height and AR activity of rhizosphere soil.

FIGURE 81: Scattered diagram between N-content of shoot and GS activity of root of diazotroph inoculated rice plants.

FIGURE 82: Scattered diagram between NR activity and GDH activity of roots of diazotroph inoculated rice plants.

FIGURE 83: Scattered diagram between dry biomass and GDH activity of roots of diazotroph inoculated rice plants.
inoculated rice plants.

FIGURE 84: Number of *Azotobacter chroococcum* (strain SDSA-I12/2) cells in different inoculant carriers.

FIGURE 85: Number of *Azospirillum amazonense* (strain SDSA-I14/1) cells in different inoculant carriers.

FIGURE 86: Number of *Burkholderia caribensis* (strain SDSA-I10/1) cells in different inoculant carriers.

FIGURE 87: Number of *Gluconacetobacter liquefaciens* (strain SDSA-I28/1) cells in different inoculant carriers.

FIGURE 88: Number of *Beijerinckia indica* (strain SDSA-I30/2) cells in different inoculant carriers.

FIGURE 89: Number of *Acinetobacter johnsonii* (strain SDSA-I19/1) cells in different inoculant carriers.

FIGURE 90: Number of diazotrophs in rhizosphere after 30 days of transplantation.

FIGURE 91: Correlation between grain yield and number of *Azotobacter* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Azotobacter* inoculants.

FIGURE 92: Correlation between grain yield and number of *Azospirillum* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Azospirillum* inoculants.

FIGURE 93: Correlation between grain yield and number of *Burkholderia* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Burkholderia* inoculants.

FIGURE 94: Correlation between grain yield and number of *Gluconacetobacter* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Gluconacetobacter* inoculants.

FIGURE 95: Correlation between grain yield and number of *Beijerinckia* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Beijerinckia* inoculants.

FIGURE 96: Correlation between grain yield and number of *Acinetobacter* cells in rice rhizosphere (30 DAT) following treatment with carrier based *Acinetobacter* inoculants.