CHAPTER VI

FORBIDDEN SUBGRAPHS

FOR

MINIMALLY NONOUTERPLANAR LINE GRAPHS

The purpose of this Chapter is to present a characterization of graphs with minimally nonouterplanar line graphs in terms of forbidden subgraphs.
6.1. INTRODUCTION

The inner vertex number \(i(G) \) of a planar graph \(G \), introduced in \(\text{[2]} \), is the minimum number of vertices not belonging to the boundary of the exterior region in any embedding of \(G \) in the plane. Obviously \(G \) is outerplanar if and only if \(i(G) = 0 \). A graph \(G \) is said to be minimally nonouterplanar if \(i(G) = 1 \).

The following will be useful to prove our result.

THEOREM A \(\text{[1]} \). A graph has a planar line graph if and only if it has no subgraph homeomorphic to \(K_5, K_{3,3}, P_4 + K_1 \) or \(K_2 + \overline{K}_5 \).

THEOREM B \(\text{[2]} \). The line graph \(L(G) \) of a finite connected graph \(G \) is minimally nonouterplanar if and only if \(G \) satisfies the following conditions:

1. \(\deg v \leq 4 \) for every vertex \(v \) of \(G \)
2. \(G \) has exactly one vertex \(v \) of degree 4, \(v \) lies on at least three blocks of \(G \) in which one block has an endvertex of \(G \) and if \(\deg v_1 = 3 \) for any other vertex \(v_1 \) of \(G \), then \(v_1 \) is a cutvertex.

or

1. \(\deg v \leq 3 \) for every vertex \(v \) of \(G \),
G has exactly two noncutvertices of degree 3 and these are adjacent.

6.2. A RESULT

We now prove

THEOREM. Let G be a connected planar graph. Then it has a minimally nonouterplanar line graph if and only if it has no subgraph homeomorphic to any one of the graphs of Fig. 6.1.

PROOF. Let G be a connected planar graph with a minimally nonouterplanar line graph. We now show that all graphs homeomorphic to any one of the graphs of Fig. 6.1, have not minimally nonouterplanar line graphs. It follows from Theorem B, since graphs homeomorphic to G_1 have $\Delta(G_1) > 4$, graphs homeomorphic to G_2 or G_5 have two or more vertices of degree four, graphs homeomorphic to G_4 or G_5 have a vertex of degree 4 which lies on two blocks, graphs homeomorphic to G_6 or G_7 have a vertex of degree 4 which lies on 3 or 4 blocks and each block containing v has no end vertex of G, graphs homeomorphic to G_8 or G_9 have a vertex of degree 4 and vertices of degree 3 which are noncutvertices, graphs homeomorphic to G_{10}, G_{11} or G_{12} have more than two noncutvertices of degree three and graphs homeomorphic to G_{13} have exactly two noncutvertices of degree three which are not adjacent.
Fig. 6.1
Conversely, suppose that G contains no subgraph homeomorphic to any one of the graphs of Fig. 6-1. Assume that $\Delta(G) \geq 5$. Then G contains a subgraph homeomorphic to G^*, a contradiction. Hence $\Delta(G) \leq 4$.

Let v be a vertex of G and $\deg v = 4$. We prove that v is a cutvertex. If not, let a, b, c and d be the vertices of G adjacent to v, then there exists a path $a - b$ containing c and d not containing v, or there exist paths $a - b$, $a - c$ and $a - d$, each of which does not contain v. By Theorem A, G contains a subgraph homeomorphic to G_4 or G_5 which is a contradiction. Thus v is a cutvertex and every vertex of degree 4 is a cutvertex.

Assume that every cutvertex of degree 4 lies on two blocks of G. Let v be a cutvertex of degree 4 and it lies on two blocks. We consider three cases:

CASE 1. If there exist two paths between a, b and c, d not containing v, then G has a subgraph homeomorphic to G_4.

CASE 2. If there exists a path $a - b$ containing either c or d, then G has a subgraph homeomorphic to G_5.

CASE 3. If there exists a path $a - b$ not containing c and d, since v lies on two blocks, there is a path
either c - a, c - b, d - a or d - b. Without loss of generality, we assume that there is a path c - a. Let u be the first vertex of intersection (starting from c) of a path c - a with a - b. Depending on the location of u on a - b, we consider two sub cases:

SUBCASE 3.1. If u = a or b, then in either case G has a subgraph homeomorphic to G_5.

SUBCASE 3.2. u \neq a and b. Without loss of generality we can assume that u lies between a and b, then G has a subgraph homeomorphic to G_5 or G_{15}.

In each case, G has a subgraph homeomorphic to G_4, G_5, or G_{15}, a contradiction. Hence v lies on either 3 or 4 blocks of G.

Suppose there are two or more cutvertices of degree four, each of which lies on either 3 or 4 blocks. Let v_1 and v_2 be the two cutvertices of degree 4 in which v_1 and v_2 are connected by a path P and let a_i, $i = 1, 2, 3$ and b_j, $j = 1, 2, 3$, be the vertices adjacent to v_1 and v_2 respectively. We consider three cases:

CASE 1. Assume v_1 and v_2 both lie on 3 blocks.

We now consider four subcases:
SUBCASE 1.1. If there exists a path between a vertex of \(a_1 \) and a vertex of \(b_j \), then \(G \) has a subgraph homeomorphic to \(G_3 \) (see Fig. 6.2(b)).

SUBCASE 1.2. If one of \(a_1 \) and one of \(b_j \) are joined by a path passing through \(u_1 \) and \(w_1 \) (not passing through \(v_1 \) and \(v_2 \)), where \(u_1 \) and \(w_1 \) are the vertices of \(P \), then \(G \) has a subgraph homeomorphic to \(G_2 \) (see Fig. 6.2(c)).

SUBCASE 1.3. If there is a path between any two vertices of \(a_1 \) not containing \(v_1 \) and also a path between any two vertices of \(b_j \) not containing \(v_2 \), then a subgraph of \(G \) is homeomorphic to \(G_2 \) (see Fig. 6.2(d)).

SUBCASE 1.4. If there is a path between any two vertices of \(a_1 \) not containing \(v \) and also a path from one of \(b_j \) to a vertex of \(P \) not containing \(v_2 \), then \(G \) has a subgraph homeomorphic to \(G_2 \) or \(G_6 \) (see Fig. 6.2(e)).

CASE 2. Assume either \(v_1 \) or \(v_2 \) lies on \(4 \) blocks, say \(v_2 \).

We consider two subcases:

SUBCASE 2.1. If there exists a path between any two vertices of \(a_1 \), then \(G \) has a subgraph homeomorphic to \(G_2 \) (see Fig. 6.2(f)).

SUBCASE 2.2. If one of \(a_1 \) is joined by a path with
Fig. 6.2
a vertex of \(P \), then \(G \) has a subgraph homeomorphic to \(G_2 \) (see Fig. 6.2(g)).

CASE 3. Assume \(v_1 \) and \(v_2 \) both lie on 4 blocks. Then \(G \) contains a subgraph homeomorphic to \(G_2 \) (see Fig. 6.2(a)).

We have exhausted all the cases and we arrive at the conclusion that \(G \) has exactly one cutvertex of degree 4 which lies on either 3 or 4 blocks.

Suppose \(\deg v = 4 \) and \(v \) lies on either 3 or 4 blocks of \(G \) in which each of these blocks has no end vertex of \(G \).

We consider two cases.

CASE 1. If \(v \) lies on 3 blocks of \(G \), then one of these blocks contains a cycle and each of the remaining blocks is an edge. Then clearly \(G \) has a subgraph homeomorphic to \(G_6 \).

CASE 2. If \(v \) lies on 4 blocks of \(G \), then each of these blocks is an edge of \(G \). Then \(G \) contains a subgraph homeomorphic to \(G_7 \).

In each case we have a contradiction. Thus if \(\deg v = 4 \), then \(v \) lies on either 3 or 4 blocks of \(G \) in which at least one block has an end vertex of \(G \).
Further suppose $\deg v_1 = 3$ for any other vertex $v_1 \neq v$ of G and v_1 is not a cutvertex. The proof of the condition (2) of Theorem B will be completed if we disprove the above statement by deducing a contradiction.

We consider two cases:

CASE 1. v is adjacent to v_1.

Let v_2 and v_3 be the vertices of G adjacent to v_1. Since v_1 is not a cutvertex, there exist two shortest paths $Z_1 (v - v_3)$ and $Z_2 (v - v_2)$ which do not contain v_1. The minimality of the paths assures that either $v_2 \notin Z_1$ or $v_3 \notin Z_2$. Let x be the first vertex of intersection (starting from v_2) of Z_2 with Z_1. If $x = v_2$ or v_3, then in either case G has a subgraph homeomorphic to G_8 (see Fig. 6.3(b1) or 6.3(b2)). If $x = v$, then G contains a subgraph homeomorphic to G_4 or G_5 (see Fig. 6.3(c)). If $x \neq v_2, v_3$ and v, then G has a subgraph that is homeomorphic to G_8 (see Fig. 6.3(a)).

CASE 2. v is not adjacent to v_1.

Since G is connected, there exists a path $Z_1 (v - v_1)$. Let v_2 and v_3 be the vertices of G adjacent to v_1 and let v_4 be a vertex on Z_1 which divides Z_1.
Fig. 6.3
into two subpaths $Z'_1 (v - v_4)$ and $Z''_1 (v_4 - v_1)$. Since v_1 is not a cutvertex, there are two paths $Z_2 (v_4 - v_2)$ and $Z_3 (v_4 - v_3)$ which do not contain v_1. There are four subcases to consider depending on whether or not v is on Z_2 and Z_3.

Subcase 2.1. v is on Z_2 and Z_3.

Let x be the last but one vertex of Z_2 which also belongs to Z_3. If $x = v_2$ or v_3, then in either case we have a subgraph of G that is homeomorphic to G_8 (see Fig. 6.3(e1) or 6.3(e2)). If $x = v$, then G has a subgraph homeomorphic to G_{11}, G_5 or G_{13} (see Fig. 6.3(f)). If $x \neq v_2, v_3$ and v, then G contains a subgraph homeomorphic to G_8 (see Fig. 6.3(d)).

Subcase 2.2. v lies on Z_2 or Z_3. In either case we have a subgraph homeomorphic to G_8 (see Fig. 6.3(g1) or 6.3(g2)).

Subcase 2.3. v does not lie on Z_2 and Z_3.

Again we consider two subcases of subcase 2.3.

Subcase 2.3.1. v lies on three blocks.

(a) There exists a path (other than Z'_1) $v - y$ where $y \in Z'_1$.
(I) Assume Z_2 and Z_3 are not disjoint. Let x be the last but one vertex of Z_2 which also belongs to Z_3. If $x = v_2$ or v_3, then in either case G has a subgraph homeomorphic to G_8 or G_{11} (see Fig.6.3(i) or 63(i)). If $x = v_4$, then G contains a subgraph homeomorphic to G_9, G_8 or G_{13} (see Fig.6.3(j)). If $x \neq v_2$, v_3 and v_4, then G has a subgraph homeomorphic to G_8, G_{11} or G_{13} (see Fig.6.3(h)).

If $y = v_1$, then G has a subgraph homeomorphic to G_8 (see Fig.6.3(k)). If $y \neq v_1$, then G contains a subgraph homeomorphic to G_8 (see Fig.6.3(l)).

(II) Assume Z_2 and Z_3 are disjoint. If $y = v_1$, then G contains a subgraph homeomorphic to G_8 or G_{13} (see Fig.6.3(m)). If $y \neq v_1$, then G has a subgraph homeomorphic to G_7, G_8 or G_{13} (see Fig.6.3(n)).

(b) There exists a path (other than Z_1) $v - y$ where $y \in Z_1$ or there exists a path between pair of adjacent vertices of v.

(I) Assume Z_2 and Z_3 are not disjoint.
Let x be the last but one vertex of Z_2 which also belongs to Z_3. If $x = v_2$ or v_3, then in either case G contains a subgraph homeomorphic to G_9 (see Fig. 6.3(p_1) or 6.3(p_2). If $x \neq v_2$, v_3, then G has a subgraph homeomorphic to G_9 or G_{13} (see Fig. 6.3(e)).

(II) Assume Z_2 and Z_3 are disjoint. Then $x = v_4$. In this case G has a subgraph homeomorphic to G_5 (see Fig. 6.3(q)).

SUBCASE 2.3.2. v lies on four blocks. Then there is no path between pairs of vertices adjacent to v or no $v - y$ path exists, where $y \notin Z'$.

This subcase is analogous to subcase 2.3.1.(b).

We omit the proof.

We have completed all cases. In each case, we found that G contains a subgraph homeomorphic to one of the forbidden subgraphs of Fig. 6.1. Hence v_4 is a cutvertex.

Lastly, we prove condition (2') of Theorem B. If $\deg v \neq 4$ then $\Delta(G) \leq 3$. Suppose G contains more than two noncutvertices of degree 3. We consider
the following three cases.

CASE 1. If G is nonouterplanar, then G has a nonouterplanar block H with more than 3 vertices. If H is drawn in the plane, then the maximum number of vertices lie on the exterior cycle C. Since H is nonouterplanar, there exists at least one vertex which lies in the interior of C. Let v be the vertex interior to C and adjacent to 2 vertices of C. Degree of v must be three. Otherwise H contains two noncut vertices of degree three. Hence there is a path from v to some other vertex of C. Thus a subgraph of H is homeomorphic to G_{10}.

CASE 2. If G has at least two diagonal edges, then there are 2 subcases to consider depending on whether the 2 diagonal edges exist in one cycle or in two different edge disjoint cycles.

SUBCASE 2.1. If two diagonal edges exist in one cycle of G, then G has a subgraph homeomorphic to G_{10} or G_{11}.

SUBCASE 2.2. If two diagonal edges exist in two different edge disjoint cycles of G, then G has a subgraph homeomorphic to G_{12}.
CASE 5. If G is nonouterplanar with at least two diagonal edges, then G contains a subgraph homeomorphic to G_{10}.

In each case we have a contradiction. Hence G has exactly two noncutvertices of degree 3.

Suppose G has exactly two nonadjacent noncutvertices of degree three. Then there exist 3 disjoint paths between these two noncutvertices of degree 3. Clearly G contains a subgraph homeomorphic to G_{13}, a contradiction. Thus G has exactly two adjacent noncutvertices of degree 3. Thus Theorem B implies that G has a minimally nonouterplanar line graph.
REFERENCES
