Table 9.3.5: Assignment of corresponding proton units to the peaks obtained from 1H NMR spectrum of the isolated compound (EJ-1) from methanol leaf extract of *Eurya japonica* Thunb.

Table 9.3.6: Assignment of corresponding carbon units to the peaks obtained from 13C NMR spectrum of the isolated compound (EJ-1) from methanol leaf extract of *Eurya japonica* Thunb.

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure: 2.2: (A) & (B) Eurya japonica Thunb. plant in natural habitat, Phayeng Imphal west district, Manipur. (C) Dry leaves of Eurya japonica Thunb. and (D) Fresh fruiting branch and leaves of Eurya japonica Thunb.</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 3.1a: The structure of SAD (Scoparic acid D) isolated from Scoparia dulcis.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1b: The structure of Mahanimbine isolated from Murraya koenigii leaves.</td>
<td>19</td>
</tr>
<tr>
<td>Figure 3.1c: Structure of Mangiferin isolated from Mangifera indica stem bark.</td>
<td>20</td>
</tr>
<tr>
<td>Figure 3.1d: 1: Euryanoside; 5-O-α-L-rhamnopyranosyl-(1-2)-(6"-O-acetyl)-β-D-glucopyranoside; 2: Monoglycoside; 3: Apigenin; 4: Halleridone and 5: Cornoside.</td>
<td>21</td>
</tr>
<tr>
<td>Figure 3.1e: 1: Eutigosides D; 2: Eutigosides E; 3: Eutigoside B; 4: Eutigoside C; 5: Cinnamic acid; 6: Rengyolone and 7: Cleroindicin B.</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.1f: 1): (+)-ovaformin B-9'-O-{β}-D-glucopyranoside; 2): (-)-ovaformin B-9'-O-{β}-D-glucopyranoside; 3): (+)-ovaformin E-9'-O-{β}-D-glucopyranoside; 4): (-)-ovaformin E-9'-O-{β}-D-glucopyranoside;</td>
<td>24</td>
</tr>
</tbody>
</table>
5): Eusiderin N;
6): (7S,8R)-3,5,5'-trimethoxy-4',7-epoxy-8,3'-neolignan-9,
\[9'-\text{dial-4-O-\(\beta\)-D-xylopyranoside;}
7): 5,7-dihydroxy-4H-chromen-4-one-3-O-\(\beta\)-D-glucopyranoside and
8): 5,7-dihydroxy-4H-chromen-4-one-3-O-\(\beta\)-D-xylopyranoside.

Figure 3.1g 1): Betulinic acid; 2): Lupeol; 3): Stigmasterol; 4): Bergapten;

Chapter 6

Figure 6.3: i, ii, iii and iv) Maximum Zone of Inhibition in diameter (in mm) 56
of the growth of *Staphylococcus aureus*, *Klebsiella pneumonia*,
Pseudomonas species and *E.coli* measured on standard
disks (S,C,NX & T).

Figure 6.3: v, vi and vii) Maximum Zone of Inhibition in diameter (in mm) 56
of the growth of *Pseudomonas species*, *Klebsiella pneumonia* and
E.coli measured on petroleum ether extract of *Eurya japonica* Thunb.

Figure 6.3: viii, ix and x) Maximum Zone of Inhibition in diameter (in mm) 57
of the growth of *Staphylococcus aureus* measured on petroleum ether
and *Pseudomonas species* and *Klebsiella pneumonia* measured on
ethyl acetate extract of *Eurya japonica* Thunb.

Figure 6.3: xi and xii) Maximum Zone of Inhibition in diameter (in mm) 57
of the growth of *Staphylococcus aureus* measured on ethyl acetate
extract and *Pseudomonas species* measured on acetone extract
of *Eurya japonica* Thunb.

Figure 6.3: xiii, xiv and xv) Maximum Zone of Inhibition in diameter (in mm) 57
of the growth of *Staphylococcus aureus* and *Escherichia coli* measured
on acetone extract and *Staphylococcus aureus* measured on ethanol
extract of *Eurya japonica* Thunb.

Figure 6.3: xvi, xvii and xviii) Maximum Zone of Inhibition in diameter (in mm) 58
of the growth of *Klebsiella pneumonia*, *Staphylococcus aureus* measured
on ethyl acetate extract of *Ficus auriculata* Lour. and *Pseudomonas
species* measured on acetone extract of *Ficus auriculata* Lour.

Figure 6.3: xix, xx and xxi) Maximum Zone of Inhibition in diameter (in mm) 58
of the growth of *Escherichia coli* measured on acetone extract and
Escherichia coli and *Pseudomonas species* measured on ethanol extract of *Ficus auriculata* Lour.

Chapter 7

Figure 7.3.1: Structure of DPPH and its reduction by an antioxidant 66

Figure 7.3.2a: Linear regression of %DPPH Scavenging Vs Concentration of the leaf extract of *Eurya japonica* Thunb. 67

Figure 7.3.2b: Linear regression of %DPPH Scavenging Vs Concentration of the leaf extract of *Ficus auriculata* Lour. 67

Figure 7.3.3a: Reducing power assay of the methanol leaf extract of *Eurya japonica* Thunb. 68

Figure 7.3.3b: Reducing power assay of the methanol leaf extract of *Ficus auriculata* Lour. 69

Figure 7.3.4: Graph showing Optical density at 510 nm Vs Concentration of Gallic acid standard (mg/ml). 71

Chapter 8

Figure 8.3.1a: Changes in body weight of control and treated groups of mice for the acute toxicity test of the leaf extract of *Eurya japonica* Thunb. 79

Figure 8.3.1b: Changes in body weight of control and treated groups of mice for the acute toxicity test of the leaf extract of *Ficus auriculata* Lour. 79

Figure 8.3.4:

i) Section of the Pancreas showing normal appearance of islet of Langerhans (IL) in the pancreas of the normal control group.

ii) Section of the Pancreas showing marked degeneration of islet of Langerhans (IL) in the pancreas of the diabetic control group.

iii) Section of the Pancreas showing marked regeneration of islet of Langerhans (IL) in the pancreas of the group treated with glibenclamide.

iv) & v) & vi) & vii) Pancreas section showing marked regeneration of islet of Langerhans (IL) in the pancreas of the group treated with methanol leaf extract of *Eurya japonica* Thunb. & *Ficus auriculata* Lour. (300mg/kg b.w & 600mg/kg b.w.) respectively.

Figure 8.3.4:

viii) Section of the Pancreas showing normal appearance of the pancreatic acini (PA) in the pancreas of the normal control group.
ix) Section of the Pancreas showing marked degeneration of the pancreatic acini (PA) a in the pancreas of the diabetic control group.

x) Section of the Pancreas showing marked regeneration of the normal cellular architecture of pancreatic acini (PA) in the pancreas of the group treated with glibenclamide.

xi) & xii) xiii) & xiv) Pancreas section showing marked regeneration of the cellular architecture of the pancreatic islets (PA) in the pancreas of the group treated with methanol leaf extract of Eurya japonica Thunb. & Ficus auriculata Lour. (300mg/kg b.w & 600mg/kg b.w.) respectively.

Figure 8.3.4:

xv) Section of the Liver showing normal appearance of lobules with portal traits at the vertices, central vein in the middle, sinusoid (NS) and hepatocytes (H) in the liver of normal control group.

xvi) Liver section showing dilated sinusoid (DS), necrosis (N) in the diabetic control group.

xvii) Liver section showing regenerative effects of hepatocytes and sinusoid in glibenclamide treated group.

xviii) & xix); xx) & xxi) Liver section showing regenerative effects of hepatocytes and sinusoid in treatment with methanol leaf extract of Eurya japonica Thunb. and Ficus auriculata Lour. (300mg/kg b.w & 600mg/kg b.w.) respectively.

Figure 8.3.4:

xxii) Section of the Liver showing normal appearance of lobules with portal traits at the vertices, central vein in the middle, sinusoid (NS) and hepatocytes (H) in the liver of normal control group.

xxiii) Liver section showing dilated sinusoid (DS), necrosis (N), degenerative hepatocytes (DH), vacuolization (V) in the diabetic control group.

xxiv) Liver section showing regenerative effects of hepatocytes and sinusoid in glibenclamide treated group.

xxv) & xxvi); xxvii) & xxviii) Liver section showing regenerative effects of hepatocytes and sinusoid in treatment with methanol leaf extract of Eurya japonica Thunb. and Ficus auriculata Lour. (300mg/kg b.w & 600mg/kg b.w.) respectively.
Figure 8.3.4:

xxix) Section of the normal kidney of the normal control mice revealed normal glomerulus surrounded by the Bowman’s capsule, proximal and distal convoluted tubules without any inflammatory changes.

xxx) Histopathological study of the STZ induced kidney of the diabetic mice exhibited distorted and slightly expanded glomeruli with slightly thickening glomerular basement membranes (GBMS) and mild necrosis were also noticed in some sections of convoluted tubules.

xxxi) Glibenclamide treated mice showing normalization of glomerulus, absence of inflammatory cells, improvement in basement membrane and capillaries.

xxxii) & xxxiii); xxxiv) & xxxv) The group that was treated with methanol extract of Eurya japonica Thunb. and Ficus auriculata Lour. (300 mg/kg b.w. & 600 mg/kg b.w.) respectively for 15 days showed features of healing Comparable to that of glibenclamide treated mice that is normalization of glomerulus, absence of inflammatory cells, improvement in basement membrane and capillaries.

Chapter 9

Figure 9.2.2a: Functional schematics of a) Ascending development chamber for TLC and b) TLC plate showing distances travelled by the spot and the solvent when the solvent front has nearly reached the top of the adsorbent.

Figure 9.3.1: A) Acetone extract at P.E:E.A (7:3).
B) Acetone extract at 100% P.E.
C) Ethyl acetate extract at P.E:E.A (7:3).
D) Methanol extract at P.E:E.A (7:3).
E) Petroleum ether extract at P.E:E.A (7:3).
F) Ethanol extract at 100% C.

Figure 9.3.2: A. Methanol extract at P.E:E.A (7:3).
B. Ethyl acetate extract at 100% P.E.
C. Acetone extract at 100% C.
D. Methanol extract at P.E:E.A (9:1).

Figure 9.3.3: Preparative TLC of methanolic leaf extract of Eurya japonica Thunb.

Figure 9.3.4: Preparative TLC of methanolic leaf extract of Ficus auriculata Lour.
Figure 9.3.5: FT-IR spectrum of isolated compound (EJ-1) from methanol leaf extract of *Eurya japonica* Thunb.

Figure 9.3.6: Mass spectrum of isolated compound (EJ-1) from the leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7a: 1H NMR spectra of isolated compound (EJ-1) from the leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7b: 1H NMR spectra of isolated compound (EJ-1) from the leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7c: Assignment of the protons corresponding to the peaks obtained from 1H NMR of isolated compound obtained from the methanol leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7d: 13C NMR spectra of the isolated compound (EJ-1) from the leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7e: Assignment of the carbons corresponding to the peaks obtained from 13C NMR of isolated compound obtained from the methanol leaf extract of *Eurya japonica* Thunb.

Figure 9.3.7f: The structure of 6-(2-hydroxybenzylxyloxy)-3,4,5-trihydroxy-tetrahydro-2H-pyran-2-yl)methoxy)-3-methylpent-4-enal isolated from the leaf of *Eurya japonica* Thunb.
