CONTENTS

Chapter-1 Introduction 1-18

1.1 An overview of cancer
1.2 Breast cancer menace in the population of southern Assam
1.3 Cancer associated genes in breast cancer
1.4 Associated tumor suppressor gene in breast cancer
 1.4.1 *BRCA1* as caretaker gene
 1.4.1.1 Role of *BRCA1* in breast cancer
 1.4.2 *TP53* as a gatekeeper gene
 1.4.2.1 Role of *TP53* in breast cancer
1.5 Role of low penetrance candidate genes in breast cancer
1.6 Mutational hotspot screening of selected genes in the population of southern Assam
1.7 Objectives

Chapter-2 Review of Literature 19-45

2.1 Prevalence of breast cancer associated genes
2.2 Cancer associated genes in breast cancer progression
 2.2.1 *BRCA1* a strong candidate for breast cancer
 2.2.1.1 Trend of 5/147 mutation in breast cancer
 2.2.2 *TP53* as gatekeeper for breast cancer
 2.2.2.1 Trend of 5/14 mutation in breast cancer
2.3 Screening of breast cancer
 2.3.1 Cytopathological screening
 2.3.1.1 Haematoxyline and eosin staining in breast cancer
 2.3.1.2 Immunohistochemistry in breast cancer diagnosis
 2.3.2 Molecular screening for breast cancer

Chapter-3 Materials and Methods 46-67

3.1 Materials
 3.1.1 Survey and Collection of Samples
3.1.2 Chemicals 46
3.1.3 Preparation of Reagents and Buffers 47-52
 3.1.3.1 Reagents 48
 3.1.3.2 Buffers 50
3.1.4 Primers 53

3.2 Methods 55-67
 3.2.1 Processing of tissue and blood 55-58
 3.2.1.1 Hematoxylin and Eosin staining 56
 3.2.1.2 Immunohistochemistry expression using specific antibody 57
 3.2.2 Isolation and Quantification of DNA 58-67
 3.2.2.1 Isolation of DNA from blood 58
 3.2.2.2 Isolation of DNA from tissue 59
 3.2.2.3 Visualization of DNA 60
 3.2.3 PCR amplification of selected genes 61
 3.2.4 Sequence enrichment through COLD PCR 62
 3.2.5 Purification of PCR amplicons 64
 3.2.6 Sequencing of PCR amplicons 65
 3.2.7 Analysis of sequenced data through bioinformatics tool 65

Chapter-4 Results 68-107

4.1 Survey, Cytology and Immunohistochemistry 69-82
 4.1.1 Survey of breast cancer patients in hospitals 69
 4.1.2 Histopathology of breast cancer cells 74
 4.1.3 Immunohistochemistry expression using Anti-BRCA1 (Ab-1423) antibody 79

4.2 Molecular diagnosis of breast cancer patients 83-92
 4.2.1 Qualitative and quantitative characteristics of sample DNA 83
 4.2.2 Designing of primers for amplification 84
 4.2.3 Amplification of targeted mutation 89
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Enhancement of molecular detection</td>
<td>93-102</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Hotspot mutation detection</td>
<td>93</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Enrichment of sequence through COLD PCR technique</td>
<td>96</td>
</tr>
<tr>
<td>4.4</td>
<td>Low penetrance candidate genes involvement in breast cancer</td>
<td>103-107</td>
</tr>
<tr>
<td>Chapter-5</td>
<td>Discussion</td>
<td>108-116</td>
</tr>
<tr>
<td>5.1</td>
<td>Significance of cytopathological screening in breast cancer</td>
<td>108</td>
</tr>
<tr>
<td>5.2</td>
<td>Reputation of mutational screening in breast cancer</td>
<td>110</td>
</tr>
<tr>
<td>5.3</td>
<td>Low penetrance genes may contribute to breast cancer</td>
<td>113</td>
</tr>
<tr>
<td>6.</td>
<td>Summary / Abstract</td>
<td>117-118</td>
</tr>
<tr>
<td>7.</td>
<td>Bibliography</td>
<td>119-143</td>
</tr>
<tr>
<td>8.</td>
<td>Appendix/ publications/ participations</td>
<td>144-165</td>
</tr>
</tbody>
</table>