Chapter 3

D-continuous maps in Topological Spaces

3.1 Introduction

Several authors [7, 14, 30, 41, 59, 67] working in the field of general topology have shown much interest in the concepts of generalizations of continuous maps. A weak form of continuous map called g-continuous map was introduced by Balachandran [7]. In this chapter D-continuous maps are defined and their relations with various generalized continuous maps and few properties are discussed. Strongly D-continuous maps, perfectly D-continuous maps, D-compact and D-connected spaces are defined and developed.
3.2 D-continuous functions

In this section the concept of D-continuous functions in topological spaces are introduced and their relations with various generalized continuous maps are discussed.

Definition 3.2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be D-continuous if $f^{-1}(F)$ is D-closed in (X, τ) for every closed set F of (Y, σ).

Example 3.2.2. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is D-continuous. It is observed the closed set $F = \{b\}$, $f^{-1}(F) = \{b\}$ is D-closed.

Theorem 3.2.3. Every continuous is D-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be continuous. Let F be closed in (Y, σ). Since f is continuous, $f^{-1}(F)$ is closed in (Y, σ). By theorem 2.2.2, $f^{-1}(F)$ is D-closed in (X, τ). Hence f is D-continuous. \qed

Remark 3.2.4. The converse of the above theorem need not be true as seen from the following example:

Example 3.2.5. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = a$, $f(b) = b = f(c)$. Then f is D-continuous but not continuous. It is observed the closed set $F = \{b\}$, $f^{-1}(F) = \{b, c\}$ is D-closed but not closed.
Proposition 3.2.6. Every contra continuous and pre-continuous is D-continuous

Proof. Let \(f : (X, \tau) \to (Y, \sigma) \) be contra continuous and pre-continuous. Let \(F \) be closed in \((Y, \sigma)\). Then \(f^{-1}(F) \) is pre-closed and open in \((X, \tau)\). Hence by theorem 2.2.3, \(f^{-1}(F) \) is D-closed in \((X, \tau)\). Hence \(f \) is D-continuous. \(\square\)

Remark 3.2.7. The converse of the above proposition need not be true as seen from the following example:

Example 3.2.8. Let \(X = \{a, b, c\} = Y, \tau = \{\emptyset, \{b\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = f(b) = c \) and \(f(c) = b \). Then \(f \) is D-continuous but neither contra continuous nor pre-continuous. It is observed the closed set \(F = \{c\} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{a, b\} \) is D-closed but it is neither pre-closed nor open in \((X, \tau)\).

Proposition 3.2.9. Every D-continuous is gp-continuous.

Proof. By theorem 2.2.6, every D-closed set is gp-closed, the proof follows. \(\square\)

Remark 3.2.10. The converse of the above proposition need not be true as seen from the following example:

Example 3.2.11. Let \(X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a, b\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = a; f(b) = c \) and \(f(c) = b \). Then \(f \) is gp-continuous but not D-continuous. It is
observed the closed set \(F = \{c\} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{b\} \) is \(gpr \)-closed but not D-closed in \((X, \tau)\).

Proposition 3.2.12. Every D-continuous is \(gpr \)-continuous.

Proof. By theorem 2.2.9, every D-closed set is \(gpr \)-closed, the proof follows. \(\square\)

Remark 3.2.13. The converse of the above proposition need not be true as seen from the following example:

Example 3.2.14. By Example 3.2.11, \(f \) is \(gpr \)-continuous but not D-continuous. It is observed the closed set \(F = \{c\} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{b\} \) is \(gpr \)-closed but not D-closed in \((X, \tau)\).

Proposition 3.2.15. Every D-continuous is \(gsp \)-continuous.

Proof. By theorem 2.2.15, every D-closed set is \(gsp \)-closed, the proof follows. \(\square\)

Remark 3.2.16. The converse of the above proposition need not be true as seen from the following example.

Example 3.2.17. By example 3.2.14, \(f \) is \(gsp \)-continuous but not D-continuous. It is observed the closed set \(F = \{c\} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{b\} \) is \(gsp \)-closed but not D-closed in \((X, \tau)\).

Proposition 3.2.18. Every D-continuous is \(\pi gp \)-continuous.

Proof. By theorem 2.2.12, every D-closed is \(\pi gp \)-closed, the proof follows. \(\square\)
Remark 3.2.19. The converse of the above proposition need not be true as seen from the following example:

Example 3.2.20. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a$, $f(b) = c$ and $f(c) = b$. Then f is πgp-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{c\}$ is πgp-closed but not D-closed in (X, τ).

Remark 3.2.21. D-continuous and pre-continuous are independent. It is shown by the following example:

Example 3.2.22. By example 3.2.20, f is pre-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{c\}$ is pre-closed but not D-closed in (X, τ).

Example 3.2.23. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{c\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = a$, $f(b) = b = f(c)$. Then f is D-continuous but not pre-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{b, c\}$ is D-closed but not pre-closed.

Remark 3.2.24. D-continuous is independent of semi-continuous and semi-pre-continuous. It is shown by the following example:

Example 3.2.25. By example 3.2.23, f is D-continuous but neither semi-continuous nor semi-pre-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{b, c\}$ is D-closed but neither semi-closed nor semi-pre-closed.
Example 3.2.26. Let $X = Y = \{a, b, c\}$, $\tau = \emptyset, \{a\}, \{a, b\}, X$ and $\sigma = \emptyset, \{a, c\}, Y$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is semi-continuous and semi-pre-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{b\}$ semi-closed and semi-pre-closed but not D-closed.

Remark 3.2.27. D-continuous and pre-semi-continuous are independent. It is shown by the following example:

Example 3.2.28. Let $X = Y = \{a, b, c\}$, $\tau = \emptyset, \{c\}, X$ and $\sigma = \emptyset, \{b, c\}, Y$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = f(c) = a$ and $f(b) = b$. Then f is D-continuous but not pre-semi-continuous. It is observed the closed set $F = \{a\}$, $f^{-1}(F) = \{a, c\}$ is D-closed but not pre-semi-closed.

Example 3.2.29. By example 3.2.20, f is pre-semi-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{c\}$ is pre-semi-closed but not D-closed in (X, τ).

Remark 3.2.30. D-continuous and pg-continuous are independent. It is shown by the following examples:

Example 3.2.31. By example 3.2.23, f is D-continuous but not pg-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{b, c\}$ is D-closed but not pg-closed in (X, τ).

Example 3.2.32. By example 3.2.20, f is pg-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{c\}$ is pg-closed but not D-closed in (X, τ).
Remark 3.2.33. D-continuous and g^*p-continuous are independent. It is shown by the following example:

Example 3.2.34. By example 3.2.28, f is D-continuous but not g^*p-continuous. It is observed the closed set $F = \{a\}$ in (Y, σ), $f^{-1}(F) = \{a, c\}$ is D-closed but not g^*p-closed.

Example 3.2.35. By example 3.2.20, f is g^*p-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{c\}$ is g^*p-closed but not D-closed.

Remark 3.2.36. D-continuous and g-continuous are independent. It is shown by the following example:

Example 3.2.37. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is D-continuous but not g-continuous. It is observed the closed set $F = \{a\}$ in (Y, σ), $f^{-1}(F) = \{a\}$ is D-closed but not g-closed in (X, τ).

Example 3.2.38. Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is g-continuous but not D-continuous. It is observed the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{b\}$ is g-closed but not D-closed in (X, τ).

Proposition 3.2.39. Every D-continuous is ρ-continuous.

Proof. By theorem 2.2.42, every D-closed set is ρ-closed, the proof follows. \square

Remark 3.2.40. The converse of the above theorem need not be true as seen from the following example:
Example 3.2.41. Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a, b\}, X\} \) and \(\sigma = \{\emptyset, \{a, c\}, Y\} \). Then the identity function \(f : (X, \tau) \to (Y, \sigma) \) is \(\rho \)-continuous but not D-continuous. It is observed the closed set \(F = \{b\} \) in \((Y, \sigma) \), \(f^{-1}(F) = \{b\} \) is \(\rho \)-closed but not D-closed.

Remark 3.2.42. We have the following relationship between D-continuous and other related generalized continuous. \(A \to B(A \nrightarrow B) \) represents \(A \) implies \(B \) but not conversely (\(A \) and \(B \) are independent of each other).

3.3 Characterization of D-continuous functions

In this section the characterization of D-continuous functions in the sense of definition 3.2.1 is obtained.

Theorem 3.3.1. A function \(f : (X, \tau) \to (Y, \sigma) \) is D-continuous if and only if \(f^{-1}(U) \) is D-open in \((X, \tau) \) for every open set \(U \) in \((Y, \sigma) \).
Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be D-continuous and \(U \) be an open set in \((Y, \sigma) \). Then \(f^{-1}(U^c) \) is D-closed in \((X, \tau) \). But \(f^{-1}(U^c) = (f^{-1}(U))^c \) and so \(f^{-1}(U) \) is D-open in \((X, \tau) \). Conversely, let \(U \) be an open set in \((Y, \sigma) \). Then \(U^c \) is a closed set in \((Y, \sigma) \). Since \(f^{-1}(U) \) is D-open in \((X, \tau) \), \((f^{-1}(U))^c \) is D-closed in \((X, \tau) \). Therefore \(f^{-1}(U^c) = (f^{-1}(U))^c \) is D-closed in \((X, \tau) \).

\[\square\]

Remark 3.3.2. The composition of two D-continuous functions need not be D-continuous. It is shown by the following example:

Example 3.3.3. Let \(X = Y = Z = \{a, b, c\} \), \(\tau = \{\emptyset, \{a, b\}, X\} \), \(\sigma = \{\emptyset, \{a\}, X\} \) and \(\eta = \{\emptyset, \{a, c\}, X\} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = b, f(b) = a, f(c) = c \) and define \(g : (Y, \sigma) \rightarrow (Z, \eta) \) by \(g(x) = x \). Then \(f \) and \(g \) are D-continuous but \(g \circ f \) is not D-continuous. Since \(\{b\} \) is closed in \((Z, \eta) \), \((g \circ f)^{-1}(\{b\}) = f^{-1}(g^{-1}(\{b\})) = f^{-1}(\{b\}) = \{a\} \) is not D-closed in \((X, \tau) \).

Definition 3.3.4. 1. A space \((X, \tau) \) is said to be D-\(T_s \)-space if every D-closed set is closed.

2. A space \((X, \tau) \) is said to be D-\(T_{\frac{1}{2}} \)-space if every D-closed set is pre-closed.

Theorem 3.3.5. Let \((X, \tau) \) and \((Z, \eta) \) be topological spaces and \((Y, \sigma) \) be D-\(T_s \)-space. Then the composition \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) of D-continuous (resp. continuous) function \(f : (X, \tau) \rightarrow (Y, \sigma) \) and the D-continuous function \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is D-continuous (resp. continuous).
Proof. Let G be any closed set of (Z, η). Then by assumption $g^{-1}(G)$ is closed in (Y, σ). Since f is D-continuous (resp. continuous), $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is D-closed (resp. closed) in (X, τ). Thus $g \circ f$ is D-continuous (resp. continuous). \qed

Theorem 3.3.6. Let (X, τ) and (Z, η) be topological spaces and (Y, σ) be $T\frac{1}{2}$-space (resp Tw-space, $T\tilde{g}$-space, $gsT\frac{1}{2}$-space). Then the composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ of D-continuous function $f : (X, \tau) \rightarrow (Y, \sigma)$ and the g-continuous (resp ω-continuous, \tilde{g}-continuous, $#gs$-continuous) function $g : (Y, \sigma) \rightarrow (Z, \eta)$ is D-continuous.

Proof. Let G be any closed set of (Z, η). Then $g^{-1}(G)$ is g-closed (resp ω-closed, \tilde{g}-closed, $#gs$-closed) in (Y, σ) and by assumption, $g^{-1}(G)$ is closed in (Y, σ). Since f is D-continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is D-closed in (X, τ). Thus $g \circ f$ is D-continuous. \qed

Theorem 3.3.7. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be D-continuous and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be continuous. Then their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is D-continuous.

Proof. Let G be any closed set of (Z, η). Then $g^{-1}(G)$ is closed in (Y, σ). Since f is D-continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is D-closed in (X, τ). Thus $g \circ f$ is D-continuous. \qed

Theorem 3.3.8. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be contra continuous and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be contra continuous. Then their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is D-continuous.
Proof. Let G be any closed set of (Z, η). Since g is contra continuous, then $g^{-1}(G)$ is open in (Y, σ). Since f is contra continuous, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is closed in (X, τ). Then by theorem 2.2.2, $(g \circ f)^{-1}(G)$ is D-closed in (X, τ). Hence $g \circ f$ is D-continuous.

Definition 3.3.9. A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called D-irresolute if $f^{-1}(F)$ is D-closed (resp.D-open) in X for every D-closed (resp.D-open) subset F of Y.

Example 3.3.10. Let $X = \{a, b, c\} = Y$ with topologies $\tau = \{\emptyset, \{b\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, X\}$. Define $f : (X, \tau) \rightarrow (Y, \sigma)$ by $f(a) = c$; $f(b) = a$; $f(c) = b$. Then the function f is D-irresolute.

Theorem 3.3.11. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be D-irresolute and $g : (Y, \sigma) \rightarrow (Z, \eta)$ be D-continuous. Then their composition $g \circ f : (X, \tau) \rightarrow (Z, \eta)$ is D-continuous.

Proof. Let G be any closed set of (Z, η). Since g is D-continuous, $g^{-1}(G)$ is D-closed in (Y, σ). Since f is D-irresolute, $f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G)$ is D-closed in (X, τ). Thus $g \circ f$ is D-continuous.

Theorem 3.3.12. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be D-continuous then f is continuous if (X, τ) is D-T_s.

Proof. Let G be any closed set of (Y, σ). Since f is D-continuous and by assumption $f^{-1}(G)$ is closed in (X, τ), f is continuous.

Definition 3.3.13. 1. Let x be a point of (X, τ) and V be a subset of X. Then V is called a D-neighborhood of x in (X, τ) if there exists a D-open set U of (X, τ) such that $x \in U \subseteq V$.

43
2. The intersection of all D-closed sets containing a set A in a topological space X is called a D-closure of A and is denoted by $D\text{-}cl(A)$.

Theorem 3.3.14. Let A be a subset of (X, τ). Then $x \in D\text{-}cl(A)$ if and only if for any D-neighborhood N_x of x in (X, τ) such that $A \cap N_x \neq \emptyset$.

Proof. Necessity: Assume that $x \in D\text{-}cl(A)$. Suppose that there exists a D-neighborhood N_x of x such that $A \cap N_x = \emptyset$. Since N_x is a D-neighborhood of x in (X, τ), by definition 3.3.13, there exists a D-open set V_x such that $x \in V_x \subseteq N_x$. Therefore, we have $A \cap V_x = \emptyset$ and so $A \subseteq (V_x)^c$. Since $(V_x)^c$ is a D-closed set containing A, we have $D\text{-}cl(A) \subseteq (V_x)^c$ and therefore $x \notin D\text{-}cl(A)$, which is a contradiction.

Sufficiency: Assume that for each D-neighborhood N_x of x in (X, τ) such that $A \cap N_x \neq \emptyset$. Suppose $x \notin D\text{-}cl(A)$. Then there exists a D-closed set F of (X, τ) such that $A \subseteq F$ and $x \notin F$. Thus $x \in F^c$ is D-open in (X, τ). But $A \cap F^c = \emptyset$, which is a contradiction.

Theorem 3.3.15. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Then the following statements are equivalent:

1. The function f is D-continuous

2. The inverse of each open set in (Y, σ) is D-open in (X, τ)

3. The inverse of each closed set in (Y, σ) is D-closed in (X, τ)
4. For each \(x \) in \((X, \tau) \) the inverse of every neighborhood of \(f(x) \) is a D-neighborhood of \(x \).

5. For each \(x \) in \((X, \tau) \) and each neighborhood \(N \) of \(f(x) \), there is a D-neighborhood \(W \) of \(x \) such that \(f(W) \subseteq N \).

6. For each subset \(A \) of \((X, \tau) \), \(f(D-cl(A)) \subseteq cl(f(A)) \).

7. For each subset \(B \) of \((Y, \sigma) \), \(D-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \).

Proof. 1 \(\iff \) 2 This follows from theorem 3.3.1.

2 \(\iff \) 3 The proof is clear from the result \(f^{-1}(A^c) = (f^{-1}(A))^c \).

2 \(\iff \) 4 Let \(x \in X \) and let \(N \) be a neighborhood of \(f(x) \). Then there exists an open set \(V \) in \((Y, \sigma) \) such that \(f(x) \in V \subseteq N \). Consequently \(f^{-1}(V) \) is D-open in \((X, \tau) \) and \(x \in f^{-1}(V) \subseteq f^{-1}(N) \). Thus \(f^{-1}(N) \) is a D-neighborhood of \(x \).

4 \(\iff \) 5 Let \(x \in X \) and let \(N \) be a neighborhood of \(f(x) \). Then by assumption, \(W = f^{-1}(N) \) is a D-neighborhood of \(x \) and \(f(W) = f(f^{-1}(N)) \subseteq N \).

5 \(\iff \) 6 Suppose that (5) holds. Let \(y \in f(D-cl(A)) \) and let \(N \) be any neighborhood of \(y \). Then there exists \(x \in X \) and a D-neighborhood \(W \) of \(x \) such that \(f(x) = y, x \in W \). Hence \(x \in D-cl(A) \) and \(f(W) \subseteq N \). By theorem 3.3.14, \(W \cap A \neq \emptyset \) and hence \(f(A) \cap N \neq \emptyset \). Hence \(y = f(x) \in cl(f(A)) \). Therefore \(f(D-cl(A)) \subseteq cl(f(A)) \). Conversely, suppose that (6) holds. Let \(x \in X \) and \(N \) be any neighborhood of \(f(x) \). Let \(A = f^{-1}(N^c) \). Since \(f(D-cl(A)) \subseteq cl(f(A)) \subseteq N^c \), \(D-cl(A) \subseteq A \). Hence \(D-cl(A) = A \). Since \(x \notin D-cl(A) \), there exists a D-
neighborhood \(W \) of \(x \) such that \(W \cap A = \emptyset \). Hence \(f(W) \subseteq f(A^c) \subseteq N \).

6 \(\iff \) 7 Suppose that (6) holds. Let \(B \) be any subset of \((Y, \sigma)\). Then replacing \(A \) by \(f^{-1}(B) \) in (6), we obtain \(f(D-cl(f^{-1}(B))) \subseteq cl(f(f^{-1}(B))) \subseteq cl(B) \). That is \(D-cl(f^{-1}(B)) \subseteq f^{-1}(cl(B)) \). Conversely, suppose (7) holds. Let \(B = f(A) \), where \(A \) is a subset of \((X, \tau)\). Then \(D-cl(A) \subseteq D-cl(f^{-1}(B)) \subseteq f^{-1}(cl(f(A))) \) and so \(f(D-cl(A)) \subseteq cl(f(A)) \).

\[\blacksquare \]

Proposition 3.3.16. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(\omega \)-irresolute and \(M \)-preclosed function then \(f(A) \) is \(D \)-closed in \((Y, \sigma)\) for every \(D \)-closed set \(A \) of \((X, \tau)\).

Proof. Let \(U \) be any \(\omega \)-open set of \((Y, \sigma)\) such that \(f(A) \subseteq U \). Then \(A \subseteq f^{-1}(U) \). Since \(f \) is \(\omega \)-irresolute then \(f^{-1}(U) \) is \(\omega \)-open. Since \(A \) is \(D \)-closed in \((X, \tau)\), we have \(pcl(A) \subseteq int(f^{-1}(U)) \). Hence \(f(pcl(A)) \subseteq int(U) \). Since \(f \) is \(M \)-preclosed, \(f(pcl(A)) \) is pre-closed in \((Y, \sigma)\). Now \(pcl(f(A)) \subseteq pcl(f(pcl(A))) = f(pcl(A)) \subseteq int(U) \). Hence \(f(A) \) is \(D \)-closed in \((Y, \sigma)\).

\[\blacksquare \]

Theorem 3.3.17. If the bijective function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre-irresolute and \(\omega^* \)-open then \(f \) is \(D \)-irresolute.

Proof. Let \(A \) be \(D \)-closed in \((Y, \sigma)\) and let \(U \) be any \(\omega \)-open set in \((X, \tau)\) such that \(f^{-1}(A) \subseteq U \). Then \(A \subseteq f(U) \). Since \(f \) is \(\omega^* \)-open, \(f(U) \) is \(\omega \)-open in \((Y, \sigma)\). Since \(A \) is \(D \)-closed in \((Y, \sigma)\), we have \(pcl(A) \subseteq int(f(U)) \). Thus \(f^{-1}(pcl(A)) \subseteq f^{-1}(int(f(U))) \subseteq int(f^{-1}(f(U))) = int(U) \). Since \(f \) is pre-irresolute, we have \(f^{-1}(pcl(A)) \subseteq int(U) \).
is pre-closed in \((X, \tau)\). Now,
\[pcl(f^{-1}(A)) \subseteq pcl(f^{-1}(pcl(A))) = f^{-1}(pcl(A)) \subseteq int(U). \]
Hence \(f^{-1}(A)\) is D-closed in \((X, \tau)\) and so \(f\) is D-irresolute.

\[\square \]

Theorem 3.3.18. 1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(gp\)-continuous and contra continuous then \(f \) is D-continuous.

2. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(gpr\)-continuous and RC-continuous then \(f \) is D-continuous.

Proof. 1. Let \(F \) be any closed set of \((Y, \sigma)\). Since \(f \) is \(gp\)-continuous and contra continuous, \(f^{-1}(F) \) is \(gp\)-closed and open in \((X, \tau)\). By theorem 2.3.16, \(f^{-1}(F) \) is D-closed in \((X, \tau)\). Hence \(f \) is D-continuous.

2. Let \(F \) be any closed set of \((Y, \sigma)\). Since \(f \) is \(gpr\)-continuous and RC-continuous, \(f^{-1}(F) \) is \(gpr\)-closed and regular open. By theorem 2.3.14, \(f^{-1}(F) \) is D-closed in \((X, \tau)\). Hence \(f \) is D-continuous.

\[\square \]

Theorem 3.3.19. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is D-irresolute and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is D-irresolute then \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is D-irresolute.

Proof. Let \(G \) be any D-closed set of \((Z, \eta)\). Since \(g \) is D-irresolute, \(g^{-1}(G) \) is D-closed in \((Y, \sigma)\). Since \(f \) is D-irresolute, \(f^{-1}(g^{-1}(G)) = (g \circ f)^{-1}(G) \) is D-closed in \((X, \tau)\). Thus \(g \circ f \) is D-irresolute.

\[\square \]
The following are regarding the restriction of a D-continuous function:

Theorem 3.3.20. Let \(f : (X, \tau) \to (Y, \sigma) \) be a D-continuous function and \(H \) be a open D-closed subset of \(X \). Assume that \(\text{DC}(X, \tau) \) (the class of all D-closed sets of \((X, \tau) \)) is D-closed under finite intersections. Then the restriction \(f|H : (H, \tau_H) \to (Y, \sigma) \) is D-continuous.

Proof. Let \(F \) be a closed subset of \(Y \). By hypothesis and assumption,
\[f^{-1}(F) \cap H = H_1 \text{ (say)} \] is D-closed in \(X \). Since \((f|H)^{-1}(F) = H_1 \), it is sufficient to show that \(H_1 \) is D-closed in \(H \). Let \(G_1 \) be an \(\omega \)-open set in \(H \) such that \(H_1 \subseteq G_1 \). Then by hypothesis and by Lemma 1.1.19(2), \(G_1 \) is \(\omega \)-open in \(X \). Since \(H_1 \) is D-closed in \(X \), \(\text{pcl}_X(H_1) \subseteq \text{int}(G_1) \). Since \(H \) is open and by lemma 1.1.15, \(\text{pcl}_H(H_1) = \text{pcl}_X(H_1) \cap H \subseteq \text{int}(G_1) \cap H = \text{int}(G_1) \cap \text{int}(H) = \text{int}(G_1 \cap H) \subseteq \text{int}(G_1) \). Hence \(H_1 = (f|H)^{-1}(F) \) is D-closed in \(H \). Thus \(f|H \) is D-continuous. \(\square \)

Theorem 3.3.21. Let \(A \) and \(Y \) be subsets of \((X, \tau) \) such that \(A \subseteq Y \subseteq X \). Let \(A \) be \(\omega \)-closed and regular closed in \((X, \tau) \). If \(A \) is D-closed in \((Y, \sigma) \) and \(Y \) is open and D-closed in \((X, \tau) \) then \(A \) is D-closed in \((X, \tau) \).

Proof. Let \(U \) be an \(\omega \)-open set of \((X, \tau) \) such that \(A \subseteq U \). Since \(Y \) is open in \((X, \tau) \) and \(A \) is D-closed in \((Y, \sigma) \), we have \(\text{pcl}_Y(A) \subseteq \text{int}_Y(U \cap Y) \). Thus \(\text{pcl}(A) \cap Y \subseteq \text{pcl}_Y(A) \subseteq \text{int}_Y(U \cap Y) = \text{int}(U \cap Y) \). By lemma 1.1.19(1), \((\text{pcl}(A))^c \) is \(\omega \)-open in \((X, \tau) \). Hence \(\text{int}(U \cap Y) \cup (\text{pcl}(A))^c \) is \(\omega \)-open in \((X, \tau) \) and it contains \(Y \). Since \(Y \) is D-closed...
in \((X, \tau)\), we have \(\text{pcl}(A) \subseteq \text{pcl}(Y) \subseteq \text{int}[\text{int}(U \cap Y) \cup (\text{pcl}(A))^c] \subseteq \text{int}(U) \cup (\text{pcl}(A))^c\). Thus \(\text{pcl}(A) \subseteq \text{int}(U)\). Hence \(A\) is D-closed in \((X, \tau)\). □

Theorem 3.3.22. Let \(X = G \cup H\) be a topological space with topology \(\tau\) and \(Y\) be a topological space with topology \(\sigma\). Let \(f : (G, \tau_G) \to (Y, \sigma)\) and \(g : (H, \tau_H) \to (Y, \sigma)\) be D-continuous functions such that \(f(x) = g(x)\) for every \(x \in G \cap H\). Assume that \(D[E] \subseteq D_p[E]\), for any \(E \subseteq X\). Suppose that both \(G\) and \(H\) are open and D-closed in \((X, \tau)\). Then their combination \(f \Delta g : (X, \tau) \to (Y, \sigma)\) defined by \((f \Delta g)(x) = f(x)\) if \(x \in G\) and \((f \Delta g)(x) = g(x)\) if \(x \in H\) is D-continuous.

Proof. Let \(F\) be a closed subset of \((Y, \sigma)\). Then \(f^{-1}(F)\) is D-closed in \((G, \tau_G)\) and \(g^{-1}(F)\) is D-closed in \((H, \tau_H)\). Since \(G\) and \(H\) are both open and D-closed subsets of \((X, \tau)\), by theorem 3.3.21, \(f^{-1}(F)\) and \(g^{-1}(F)\) are both D-closed sets in \((X, \tau)\). By theorem 2.3.23, \(f^{-1}(F) \cup g^{-1}(F)\) is D-closed in \((X, \tau)\). By definition, \((f \Delta g)^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)\) is D-closed in \((X, \tau)\). Hence \(f \Delta g\) is D-continuous. □

3.4 Strongly D-continuous and Perfectly D-continuous functions

The different forms of continuous functions namely Strongly continuous functions [31] and Perfectly continuous functions [49] have been introduced in this section. The concepts of Strongly D-continuous
maps, Perfectly D-continuous maps in topological spaces are introduced and some of their basic properties are studied.

Definition 3.4.1. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is called

1. Perfectly D-continuous if \(f^{-1}(F) \) is clopen in \((X, \tau)\) for every D-closed set (resp. D-open set) \(F \) of \((Y, \sigma)\).

2. Strongly D-continuous if \(f^{-1}(F) \) is closed (resp. open) in \((X, \tau)\) for every D-closed set (resp. D-open set) \(F \) of \((Y, \sigma)\).

3. Pre-D-continuous if \(f^{-1}(F) \) is D-closed in \((X, \tau)\) for every pre-closed set \(F \) of \((Y, \sigma)\).

Remark 3.4.2. From the above definition and the results that closed set \(\rightarrow \) D-closed set \(\rightarrow \) gp-closed (resp. \(\pi \) gp-closed) we have the following

```
Strongly gp-continuous
                     /           \\
Perfectly D-continuous --- Strongly D-continuous --- D-continuous
                     \\
Strongly \( \pi \) gp-continuous
```

Theorem 3.4.3. 1. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is perfectly D-continuous then \(f \) is strongly D-continuous and also D-irresolute.

2. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is pre-D-continuous then \(f \) is D-continuous.

3. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is strongly D-continuous and \(g : (Y, \sigma) \rightarrow (Z, \eta) \) is D-continuous then \(g \circ f : (X, \tau) \rightarrow (Z, \eta) \) is continuous.
4. If \(f : (X, \tau) \to (Y, \sigma) \) is strongly D-continuous and \(g : (Y, \sigma) \to (Z, \eta) \) is perfectly D-continuous then \(g \circ f : (X, \tau) \to (Z, \eta) \) is strongly D-continuous.

5. If \(f : (X, \tau) \to (Y, \sigma) \) is perfectly D-continuous and \(g : (Y, \sigma) \to (Z, \eta) \) is pre-D-continuous then \(g \circ f : (X, \tau) \to (Z, \eta) \) is D-continuous.

Proof.

1. Let \(F \) be D-closed in \((Y, \sigma)\). Then \(f^{-1}(F) \) is clopen in \((X, \tau)\) and hence \(f^{-1}(F) \) is closed in \((X, \tau)\) and so \(f \) is strongly D-continuous. By theorem 2.2.2, closed set implies D-closed, \(f^{-1}(F) \) is D-closed in \((X, \tau)\). Thus \(f \) is D-irresolute.

2. Since every closed set is pre-closed, the proof is obvious.

3. Let \(F \) be closed in \((Z, \eta)\). Then \(g^{-1}(F) \) is D-closed in \((Y, \sigma)\) and \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) is closed in \((X, \tau)\). Then \(g \circ f \) is continuous.

4. Let \(F \) be D-closed in \((Z, \eta)\). Then \(g^{-1}(F) \) is clopen in \((Y, \sigma)\). Since every closed set is pre-closed and by theorem 2.2.2, \(g^{-1}(F) \) is D-closed in \((Y, \sigma)\). Hence \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) is closed in \((X, \tau)\). Then \(g \circ f \) is strongly D-continuous.

5. Let \(F \) be closed in \((Z, \eta)\). Since every closed set is pre-closed, \(g^{-1}(F) \) is D-closed in \((Y, \sigma)\). Hence \(f^{-1}(g^{-1}(F)) = (g \circ f)^{-1}(F) \) is clopen in \((X, \tau)\). By theorem 2.2.2, \((g \circ f)^{-1}(F) \) is D-closed in \((X, \tau)\). Hence \(g \circ f \) is D-continuous.
Theorem 3.4.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective, D-irresolute and M-preclosed. If (X, τ) is a $D\text{-}T\frac{1}{2}$ space, then (Y, σ) is also $D\text{-}T\frac{1}{2}$ space.

Proof. Let A be D-closed in (Y, σ). Since f is D-irresolute, $f^{-1}(A)$ is D-closed in (X, τ). Since (X, τ) is a $D\text{-}T\frac{1}{2}$ space, $f^{-1}(A)$ is pre-closed in (X, τ). Since f is M-preclosed then $f(f^{-1}(A)) = A$ is pre-closed in (Y, σ). Hence (Y, σ) is a $D\text{-}T\frac{1}{2}$ space.

3.5 D-compactness and D-connectedness

In this section D-Compactness and D-Connectedness are defined by using D-closed sets and some of their properties are studied.

Definition 3.5.1. A topological space (X, τ) is D-compact if every D-open cover of X has a finite subcover.

Theorem 3.5.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective, D-continuous function. If X is D-compact then Y is compact.

Proof. Let $\{A_i : i \in I\}$ be an open cover of Y. Then $\{f^{-1}(A_i) : i \in I\}$ is a D-open cover of X. Since X is D-compact, it has a finite subcover say $\{f^{-1}(A_1), \ldots, f^{-1}(A_n)\}$. Since f is surjective, $\{A_1, A_2, \ldots, A_n\}$ is a finite subcover of Y. Hence Y is compact.
Definition 3.5.3. A subset A of a space X is called D-compact relative to X if every collection $\{U_i : i \in I\}$ of D-open subsets of X such that $A \subseteq \bigcup \{U_i : i \in I\}$, there exists a finite subset I_0 of I such that $A \subseteq \bigcup \{U_i : i \in I_0\}$.

Theorem 3.5.4. Every D-closed subset of a D-compact space X is D-compact relative to X.

Proof. Let A be a D-closed subset of a D-compact space X. Let $\{U_i : i \in I\}$ be a cover of A by D-open subsets of X. So, $A \subseteq \bigcup \{U_i : i \in I\}$ and then $A^c \cup (\bigcup \{U_i : i \in I\}) = X$. Since X is D-compact, there exists a finite subset I_0 of I such that $A^c \cup (\bigcup \{U_i : i \in I_0\}) = X$. Then $A \subseteq \bigcup \{U_i : i \in I_0\}$. Hence A is D-compact relative to X. \qed

Theorem 3.5.5. If $f : (X, \tau) \to (Y, \sigma)$ is an injective D-irresolute and a subset A of X is D-compact relative to X then its image $f(A)$ is D-compact relative to Y.

Proof. Let $\{f(U_i) : i \in I\}$ be a cover of $f(A)$ by D-open subsets of (Y, σ). Since f is D-irresolute, $\{U_i : i \in I\}$ is a cover of A by D-open subsets of (X, τ). Since A is compact relative to X, there exists a finite subset I_0 of I such that $A \subseteq \bigcup \{U_i : i \in I_0\}$. Hence $f(A) \subseteq \bigcup \{f(U_i) : i \in I_0\}$. Thus $f(A)$ is compact relative to Y. \qed

Theorem 3.5.6. If $p : X \times Y \to X$ is a projection, then p is D-irresolute.

Proof. Let A be a D-closed subset of X. Since p is a projection, $p^{-1}(A) = A \times Y$ is a subset of $X \times Y$. Now to show that $p^{-1}(A) = A \times Y$
is D-closed in $X \times Y$. Let U be an ω-open subset of $X \times Y$ such that $A \times Y \subseteq U$. Then $V \times Y = U$, for some open set V of X containing A. Since A is D-closed in X, we have $pcl_X(A) \subseteq \text{int}(V)$ and $pcl_X(A) \times Y \subseteq \text{int}(V) \times Y$. That is $pcl_X \times Y (A \times Y) \subseteq \text{int}(V \times Y) = \text{int}(U)$. Hence $p^{-1}(A) = A \times Y$ is D-closed in $X \times Y$.

\[\square\]

Theorem 3.5.7. If the product space $X \times Y$ is D-compact then each of the spaces X and Y is D-compact.

Proof. Let $X \times Y$ be D-compact. By theorem 3.5.6, the projection $p : X \times Y \to X$ is D-irresolute and then by theorem 3.5.5, $p(X \times Y) = X$ is D-compact. The proof for the space Y is similar to the case of X.

\[\square\]

Theorem 3.5.8. Let A be any subset of Y.

1. If $X \times A$ is D-closed in the product space $X \times Y$ and Y is T_ω-space then A is D-closed in Y.

2. If X is compact and A is D-closed in Y and $X \times Y$ is T_ω-space then $X \times A$ is D-closed in $X \times Y$.

Proof. 1. Let U be an ω-open set of Y such that $A \subseteq U$. Then $X \times A \subseteq X \times U$. Since Y is T_ω-space, U is open in Y and $X \times U$ is open in $X \times Y$. Hence $X \times U$ is ω-open in $X \times Y$. Since $X \times A$ is D-closed in $X \times Y$, $pcl(X \times A) \subseteq \text{int}(X \times U) = X \times U$. By Proposition 1.1.23, $X \times pcl(A) \subseteq X \times \text{int}(U)$. Thus $pcl(A) \subseteq \text{int}(U)$. Hence A is D-closed in Y.

54
2. Let U be an ω-open set of $X \times Y$ such that $X \times A \subseteq U$. Since X is compact and $X \times Y$ is $T\omega$-space and by the generalization of lemma 1.1.20, there exists an open set V in Y containing A such that $X \times V \subseteq U$. Since A is D-closed in Y, $pcl(A) \subseteq int(V)$. Therefore $X \times pcl(A) \subseteq X \times int(V)$. This implies $X \times pcl(A) \subseteq int(X) \times int(V) \subseteq int(X \times V)$. By proposition 1.1.23, $pcl(X \times A) \subseteq int(X \times V) \subseteq int(U)$. Hence $X \times A$ is D-closed in $X \times Y$.

Definition 3.5.9. A topological space (X, τ) is D-connected if X cannot be written as the disjoint union of two non-empty D-open sets.

Theorem 3.5.10. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a surjective, D-continuous (resp. D-irresolute) function. If X is D-connected then Y is connected (resp. D-connected)

Proof. Suppose Y is not connected (resp. not D-connected). Then $Y = A \cup B$, where $A \cap B = \emptyset$, $A \neq \emptyset$, $B \neq \emptyset$ and A, B are open (resp.D-open) sets in Y. Since f is surjective, $f(X) = Y$ and since f is D-continuous (resp.D-irresolute), $X = f^{-1}(A) \cup f^{-1}(B)$ is the disjoint union of two non-empty D-open sets, which is a contradiction to X is D-connected.

Theorem 3.5.11. If the product space $X \times Y$ is D-connected then each of the spaces X and Y is D-connected.
Proof. Let $X \times Y$ be D-connected. By theorem 3.5.6, the projection $p : X \times Y \to X$ is D-irresolute and then by theorem 3.5.10, $p(X \times Y) = X$ is D-connected. The proof for the space Y is similar to the case of X. \hfill \Box