Chapter 6

Contra D-continuous maps

6.1 Introduction

Covering spaces with closed sets have a historical background in general topology. In 1996, Dontchev [19] considered spaces where every cover by closed sets has a finite subcover. Such spaces are called strongly S-closed. It is natural to ask which class of generalized continuity transforms strongly S-closed spaces onto compact spaces. Such functions are called contra continuous functions.

The notion of contra semi-continuous functions has been introduced by Dontchev and Noiri [20], Jafari and Noiri [27, 28] introduced contra α-continuous functions and contra pre-continuous functions in topological spaces.

Here contra D-continuous maps, strongly D-closed spaces and almost contra D-continuous maps are introduced. By an example it is shown that the composition of two contra D-continuous maps need
not be contra D-continuous. Some basic properties of these maps are investigated. For example, conditions under which the almost contra D-continuous image of a space is nearly compact, nearly Lindelof and nearly countably compact are investigated.

6.2 Contra D-continuous functions

In this section, a weaker form of contra continuous maps called contra D-continuous maps are considered and studied in detail.

Definition 6.2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is called contra D-continuous if $f^{-1}(F)$ is D-open (resp. D-closed) in (X, τ) for every closed (resp. open) set F in (Y, σ).

Example 6.2.2. Let $X = \{a, b, c\} = Y$, $\tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{b, c\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous function. It is observed for the closed (resp. open) set $F = \{a\}$ in (Y, σ), $f^{-1}(F) = \{a\}$ is D-open (resp. D-closed) in (X, τ).

Theorem 6.2.3. Every contra continuous function is a contra D-continuous function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra continuous function. Let V be an open set of (Y, σ). Since f is contra continuous, $f^{-1}(V)$ is closed in (X, τ). Hence by theorem 2.2.2, $f^{-1}(V)$ is D-closed in (X, τ). Thus f is a contra D-continuous function. \qed
Remark 6.2.4. Converse of this theorem need not be true as seen from the following example:

Example 6.2.5. Let $X = \{a, b, c\} = Y, \tau = \{\emptyset, \{a\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{b, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = b, f(b) = c$ and $f(c) = a$. Then f is contra D-continuous but not contra continuous. It is observed for the open (resp. closed) set $U = \{b, c\}$ in (Y, σ), $f^{-1}(U) = \{a, b\}$ is D-closed (resp. D-open) in (X, τ) but it is not closed.

Remark 6.2.6. contra D-continuous and contra g-continuous are independent. It is shown by the following examples:

Example 6.2.7. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\}$. Then the identity function $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous but not contra g-continuous. It is observed for the closed set $F = \{b, c\}$ in (Y, σ), $f^{-1}(F) = \{b, c\}$ is D-open but not g-open in (X, τ).

Example 6.2.8. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{a\}, \{b, c\}, X\}$ and $\sigma = \{\emptyset, \{a, c\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = b, f(b) = a; f(c) = b$. Then f is contra g-continuous but not contra D-continuous. It is observed for the closed set $F = \{b\}$ in (Y, σ), $f^{-1}(F) = \{a, c\}$ is g-open but not D-open in (X, τ).

Remark 6.2.9. contra D-continuous and contra α-continuous are independent. It is shown by the following examples:

Example 6.2.10. Let $X = Y = \{a, b, c\}, \tau = \{\emptyset, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\}$. Define $f : (X, \tau) \to (Y, \sigma)$ by $f(a) = \ldots$
c; \(f(b) = a; \) \(f(c) = b. \) Then \(f \) is contra D-continuous but not contra \(\alpha \)-continuous. It is observed for the closed set \(F = \{c\} \) in \((Y, \sigma) \), \(f^{-1}(F) = \{a\} \) is D-open but not \(\alpha \)-open in \((X, \tau) \).

Example 6.2.11. Let \(X = Y = \{a, b, c\}, \) \(\tau = \{\emptyset, \{a\}, \{a, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{a, b\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = b; \) \(f(b) = c; \) \(f(c) = a. \) Then \(f \) is contra \(\alpha \)-continuous but not contra D-continuous. It is observed for the closed set \(F = \{b, c\} \) in \((Y, \sigma) \), \(f^{-1}(F) = \{a, b\} \) is \(\alpha \)-open but not D-open in \((X, \tau) \).

Remark 6.2.12. contra D-continuous and contra pre-semicontinuous are independent. It is shown by the following examples:

Example 6.2.13. Let \(X = Y = \{a, b, c\}, \) \(\tau = \{\emptyset, \{a\}, \{a, c\}, X\} \) and \(\sigma = \{\emptyset, \{b, c\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = f(c) = a \) and \(f(b) = b. \) Then \(f \) is contra D-continuous but not contra pre-semicontinuous. It is observed for the closed set \(F = \{a\} \) in \((Y, \sigma) \), \(f^{-1}(F) = \{a, c\} \) is D-open but not pre-semi-open in \((X, \tau) \).

Example 6.2.14. Let \(X = Y = \{a, b, c\}, \) \(\tau = \{\emptyset, \{a\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a, c\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = a; \) \(f(b) = c; \) \(f(c) = b. \) Then \(f \) is contra pre-semicontinuous but not contra D-continuous. It is observed for the closed set \(F = \{b\} \) in \((Y, \sigma) \), \(f^{-1}(F) = \{c\} \) is pre-semiopen but not D-open in \((X, \tau) \).

Remark 6.2.15. contra D-continuous and contra semi-continuous are independent. It is shown by the following examples:

Example 6.2.16. Let \(X = Y = \{a, b, c\}, \) \(\tau = \{\emptyset, \{c\}, \{a, c\}, X\} \) and \(\sigma = \{\emptyset, \{a, c\}, Y\} \). Define \(f : (X, \tau) \to (Y, \sigma) \) by \(f(a) = b; \) \(f(b) =
Then \(f \) is contra D-continuous but not contra semi-continuous. It is observed for the closed set \(F = \{ b \} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{ a \} \) is D-open but not semi-open in \((X, \tau)\).

Example 6.2.17. Let \(X = Y = \{ a, b, c \} \), \(\tau = \{ \emptyset, \{ a \}, \{ a, b \}, X \} \) and \(\sigma = \{ \emptyset, \{ b \}, \{ a, b \}, Y \} \). Then the identity function \(f \) is contra semi-continuous but not contra \(D \)-continuous. It is observed for the closed set \(F = \{ a, c \} \) in \((Y, \sigma)\), \(f^{-1}(F) = \{ a, c \} \) is semi-open but not \(D \)-open in \((X, \tau)\).

Remark 6.2.18. The composition of two contra \(D \)-continuous functions need not be contra \(D \)-continuous and this is shown by the following example:

Example 6.2.19. Let \(X = \{ a, b, c \} = Y = Z \), \(\tau = \{ \emptyset, \{ a \}, X \} \), \(\sigma = \{ \emptyset, \{ b, c \}, Y \} \) and \(\eta = \{ \emptyset, \{ a, c \}, Z \} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = a; f(b) = b \) and \(f(c) = b \). Then \(f \) is contra D-continuous, since for the closed set \(V = \{ a \} \) in \((Y, \sigma)\), \(f^{-1}(V) = \{ a \} \) is \(D \)-open in \((X, \tau)\). Define \(g : (Y, \sigma) \rightarrow (Z, \eta) \) by \(g(x) = x \). Then \(g \) is contra D-continuous. It is observed for the closed set \(V = \{ b \} \) in \((Z, \eta)\), \(g^{-1}(V) = \{ b \} \) is \(D \)-open in \((Y, \sigma)\). But their composition is not contra D-continuous. It is observed for the closed set \(V = \{ b \} \) in \((Z, \eta)\), \(f^{-1}(g^{-1}(V)) = f^{-1}(\{ b \}) = \{ b, c \} \) is not \(D \)-open in \((X, \tau)\).

Theorem 6.2.20. The following are equivalent for a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) Assume that \(DO(X) \) (resp. \(DC(X) \)) is closed under any union (resp. intersection)

1. \(f \) is contra D-continuous

98
2. The inverse image of a closed set F of Y is D-open in X.

3. For each $x \in X$ and each $F \in C(Y, f(x))$, there exists $U \in DO(X, x)$ such that $f(U) \subseteq F$.

4. $f(D\text{-}cl(A)) \subseteq \text{Ker}(f(A))$ for every subset A of X.

5. $D\text{-}cl(f^{-1}(B)) \subseteq f^{-1}(\text{Ker}(B))$ for every subset B of Y.

Proof. The implications (1) \Rightarrow (2), (2) \Rightarrow (3) are obvious.

(3) \Rightarrow (2) Let F be any closed set of Y and $x \in f^{-1}(F)$. Then $f(x) \in F$ and there exists $U_x \in DO(X, x)$ such that $f(U_x) \subset F$. Hence $f^{-1}(F) = \bigcup\{U_x : x \in f^{-1}(F)\}$ is obtained and by assumption $f^{-1}(F)$ is D-open.

(2) \Rightarrow (4) Let A be any subset of X. Suppose that $y \notin \text{Ker}(f(A))$. Then by Lemma 1.1.8, there exists $F \in C(X, x)$ such that $f(A) \cap F = \emptyset$. Thus $A \cap f^{-1}(F) = \emptyset$ and $D\text{-}cl(A) \cap f^{-1}(F) = \emptyset$. Hence $f(D\text{-}cl(A)) \cap F = \emptyset$ and $y \notin f(D\text{-}cl(A))$ are obtained. Thus $f(D\text{-}cl(A)) \subseteq \text{Ker}(f(A))$.

(4) \Rightarrow (5) Let B be any subset of Y. By (4) and Lemma 1.1.8, $f(D\text{-}cl(f^{-1}(B))) \subset \text{Ker}(f(f^{-1}(B))) \subset \text{Ker}(B)$ and $D\text{-}cl(f^{-1}(B)) \subset f^{-1}(\text{Ker}(B))$.

(5) \Rightarrow (1) Let U be any open set of Y. Then by lemma 1.1.8, $D\text{-}cl(f^{-1}(U)) \subset f^{-1}(\text{Ker}(U)) = f^{-1}(U)$ and $D\text{-}cl(f^{-1}(U)) = f^{-1}(U)$. By assumption, $f^{-1}(U)$ is D-closed in X. Hence f is contra D-continuous. \qed
Theorem 6.2.21. If $f : (X, \tau) \to Y, \sigma$ is D-irresolute (resp. contra D-continuous) and $g : (Y, \sigma) \to (Z, \eta)$ in contra D-continuous (resp. continuous) then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is contra D-continuous.

Proof. Let U be any open set of (Z, η). Since g is contra D-continuous (resp. continuous) then $g^{-1}(V)$ is D-closed (resp. open) in (Y, σ) and since f is D-irresolute (resp. contra D-continuous) then $f^{-1}(g^{-1}(V))$ is D-closed in (X, τ). Hence $g \circ f$ is contra D-continuous. \qed

Theorem 6.2.22. If $f : (X, \tau) \to (Y, \sigma)$ is contra continuous and $g : (Y, \tau) \to (Z, \eta)$ is continuous then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is contra D-continuous.

Proof. Let U be any open set of (Z, η). Since g is continuous, $g^{-1}(U)$ is open in (Y, σ). Since f is contra continuous, $f^{-1}(g^{-1}(U))$ is closed in (X, τ). Hence by theorem 2.2.2, $(g \circ f)^{-1}(U)$ is D-closed in (X, τ). Hence $g \circ f$ is contra D-continuous. \qed

Theorem 6.2.23. If $f : (X, \tau) \to (Y, \sigma)$ is contra continuous and super-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra continuous then their composition $g \circ f : (X, \tau) \to (Z, \eta)$ is contra D-continuous.

Proof. Let U be any open set of (Z, η). Since g is contra continuous, $g^{-1}(U)$ is closed in (Y, σ) and since f is contra continuous and super-continuous then $f^{-1}(g^{-1}(U))$ is both open and regular closed in (X, τ). Hence by theorem 2.3.17, $(g \circ f)^{-1}(U)$ is D-closed in (X, τ). Hence $g \circ f$ is contra D-continuous. \qed
Theorem 6.2.24. Let \((X, \tau), (Y, \sigma)\) be any two topological spaces and \((Y, \sigma)\) be \(T_{1/2}\)-space (resp. \(T_\omega\)-space). Then the composition \(g \circ f : (X, \tau) \to (Z, \eta)\) of contra D-continuous function \(f : (X, \tau) \to (Y, \sigma)\) and the \(g\)-continuous (resp. \(\omega\)-continuous) function \(g : (Y, \sigma) \to (Z, \eta)\) is contra D-continuous.

Proof. Let \(F\) be any closed set of \((Z, \eta)\). Since \(g\) is \(g\)-continuous (resp. \(\omega\)-continuous), \(g^{-1}(F)\) is \(g\)-closed (resp. \(\omega\)-closed) in \((Y, \sigma)\) and \((Y, \sigma)\) is \(T_{1/2}\)-space (resp. \(T_\omega\)-space), hence \(g^{-1}(F)\) is closed in \((Y, \sigma)\). Since \(f\) is contra D-continuous, \(f^{-1}(g^{-1}(F))\) is D-open in \((X, \tau)\). Hence \(g \circ f\) is contra D-continuous. \(\square\)

Theorem 6.2.25. If \(f : (X, \tau) \to (Y, \sigma)\) is a surjective \(D^*\)-open function and \(g : (Y, \sigma) \to (Z, \eta)\) is a function such that \(g \circ f : (X, \tau) \to (Z, \eta)\) is contra D-continuous then \(g\) is contra D-continuous.

Proof. Let \(F\) be any closed set of \((Z, \eta)\). Since \(g \circ f\) is contra D-continuous then \((g \circ f)^{-1}(F) = f^{-1}(g^{-1}(F))\) is D-open in \((X, \tau)\) and since \(f\) is surjective and \(D^*\)-open, then \(f(f^{-1}(g^{-1}(F))) = g^{-1}(F)\) is D-open in \((Y, \sigma)\). Hence \(g\) is contra D-continuous. \(\square\)

Theorem 6.2.26. Let \(\{X_i/i \in I\}\) be any family of topological spaces. If \(f : X \to \prod X_i\) is a contra D-continuous function. Then \(\pi_i \circ f : X \to X_i\) is contra D-continuous function for each \(i \in I\), where \(\pi_i\) is the projection of \(\prod X_i\) onto \(X_i\).

Proof. It follows from theorem 6.2.21 and the fact that the projection is continuous. \(\square\)
Theorem 6.2.27. If $f : (X, \tau) \to (Y, \sigma)$ is strongly D-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra D-continuous then $g \circ f : (X, \tau) \to (Z, \eta)$ is contra continuous.

Proof. Let U be any open set of (Z, η). Since g is contra D-continuous, then $g^{-1}(U)$ is D-closed in (Y, σ). Since f is strongly D-continuous, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is closed in (X, τ). Hence $g \circ f$ is contra continuous. \square

Theorem 6.2.28. If $f : (X, \tau) \to (Y, \sigma)$ is pre-D-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra pre-continuous then $g \circ f : (X, \tau) \to (Z, \eta)$ is contra D-continuous.

Proof. Let U be any open set of (Z, η). Since g is contra pre-continuous, then $g^{-1}(U)$ is pre-closed in (Y, σ) and since f is pre-D-continuous, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is D-closed in (X, τ). Hence $g \circ f$ is contra D-continuous. \square

Theorem 6.2.29. If $f : (X, \tau) \to (Y, \sigma)$ is strongly D-continuous and $g : (Y, \sigma) \to (Z, \eta)$ is contra D-continuous then $g \circ f : (X, \tau) \to (Z, \eta)$ is contra D-continuous.

Proof. Let U be any open set of (Z, η). Since g is contra D-continuous, then $g^{-1}(U)$ is D-closed in (Y, σ) and since f is strongly D-continuous, then $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is closed in (X, τ). By theorem 2.2.2, $(g \circ f)^{-1}(U)$ is D-closed in (X, τ). Hence $g \circ f$ is contra D-continuous. \square
Theorem 6.2.30. Let \(f : (X, \tau) \to (Y, \sigma) \) be surjective \(D \)-irresolute and \(D^* \)-open and \(g : (Y, \sigma) \to (Z, \eta) \) be any function. Then \(g \circ f : (X, \tau) \to (Z, \eta) \) is contra \(D \)-continuous if and only if \(g \) is contra \(D \)-continuous.

Proof. The ‘if’ part is easy to prove. To prove the ‘only if’ part, let \(F \) be any closed set of \((Z, \eta)\). Since \(g \circ f \) is contra \(D \)-continuous, then \((g \circ f)^{-1}(F)\) is \(D \)-open in \((X, \tau)\) and since \(f \) is \(D^* \)-open surjection, then \(f((g \circ f)^{-1}(F)) = g^{-1}(F) \) is \(D \)-open in \((Y, \sigma)\). Hence \(g \) is contra \(D \)-continuous. \(\square \)

Theorem 6.2.31. Let \(f : (X, \tau) \to (Y, \sigma) \) be a contra \(D \)-continuous function and \(H \) an open \(D \)-closed subset of \((X, \tau)\). Assume that \(DC(X, \tau) \) (the class of all \(D \)-closed sets of \((X, \tau)\)) is \(D \)-closed under finite intersections. Then the restriction \(f|H : (H, \tau_H) \to (Y, \sigma) \) is contra \(D \)-continuous.

Proof. Let \(U \) be any open set of \((Y, \sigma)\). By hypothesis and assumption, \(f^{-1}(U) \cap H = H_1 \)(say) is \(D \)-closed in \((X, \tau)\). Since \(f|H^{-1}(U) = H_1 \), it is sufficient to show that \(H_1 \) is \(D \)-closed in \(H \). By theorem 3.3.20, \(H_1 \) is \(D \)-closed in \(H \). Thus \(f|H \) is contra \(D \)-continuous. \(\square \)

Theorem 6.2.32. Let \(f : (X, \tau) \to (Y, \sigma) \) be a function and \(g : X \to X \times Y \) the graph function given by \(g(x) = (x, f(x)) \) for every \(x \in X \). Then \(f \) is contra \(D \)-continuous if \(g \) is contra \(D \)-continuous.

Proof. Let \(F \) be a closed subset of \(Y \). Then \(X \times F \) is a closed subset of \(X \times Y \). Since \(g \) is contra \(D \)-continuous, then \(g^{-1}(X \times F) \) is a \(D \)-
open subset of X. Also $g^{-1}(X \times F) = f^{-1}(F)$. Hence f is contra D-continuous.

Theorem 6.2.33. If a function $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous and Y is regular, then f is D-continuous.

Proof. Let x be an arbitrary point of X and N be an open set of Y containing $f(x)$. Since Y is regular, there exists an open set U in Y containing $f(x)$ such that $cl(U) \subseteq N$. Since f is contra D-continuous, by theorem 6.2.20, there exists $W \in DO(X, x)$ such that $f(W) \subseteq cl(U)$. Then $f(W) \subseteq N$. Hence by theorem 3.3.15, f is D-continuous. \hfill \Box

Theorem 6.2.34. Every continuous and RC-continuous function is contra D-continuous.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Let U be an open set of (Y, σ). Since f is continuous and RC-continuous, $f^{-1}(U)$ is open and regular closed in (X, τ). Hence by theorem 2.3.17, f is contra D-continuous. \hfill \Box

Theorem 6.2.35. Every continuous and contra D-continuous (resp. contra continuous and D-continuous) function is a super-continuous (resp. RC-continuous) function.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a function. Let U be an open (resp. closed) set of (Y, σ). Since f is continuous and contra D-continuous (resp. contra continuous and D-continuous), $f^{-1}(U)$ is open.
and D-closed in \((X, \tau)\). Hence by theorem 2.3.24, \(f^{-1}(U)\) is regular open in \((X, \tau)\). This shows that \(f\) is a super-continuous (resp. RC-continuous) function.

\[\square\]

Theorem 6.2.36. Let \(f : (X, \tau) \to (Y, \sigma)\) be a function and \(X\) a \(D-T_s\) space. Then the following are equivalent.

1. \(f\) is contra \(D\)-continuous.

2. \(f\) is contra continuous

Proof. (1) \(\Rightarrow\) (2). Let \(U\) be an open set of \((Y, \sigma)\). Since \(f\) is contra \(D\)-continuous, \(f^{-1}(U)\) is D-closed in \((X, \tau)\) and since \(X\) is \(D-T_s\) space, \(f^{-1}(U)\) is closed in \((X, \tau)\). Hence \(f\) is contra continuous.

(2) \(\Rightarrow\) (1) Let \(U\) be an open set of \((Y, \sigma)\). Since \(f\) is contra continuous, \(f^{-1}(U)\) is closed in \((X, \tau)\). Hence by theorem 2.2.2, \(f^{-1}(U)\) is D-closed in \((X, \tau)\). Hence \(f\) is contra \(D\)-continuous.

\[\square\]

6.3 Contra \(D\)-closed and Strongly \(D\)-closed

In this section, contra \(D\)-closed graph and strongly \(D\)-closed spaces are introduced. Several properties are proved.

Definition 6.3.1. A graph \(G(f)\) of a function \(f : (X, \tau) \to (Y, \sigma)\) is said to be contra \(D\)-closed in \(X \times Y\) if for each \((x, y) \in (X \times Y) - G(f)\) there exist \(U \in DO(X, x)\) and \(V \in C(Y, y)\) such that \((U \times V) \cap G(f) = \emptyset\).
Lemma 6.3.2. A graph $G(f)$ of a function $f : (X, \tau) \to (Y, \sigma)$ is contra D-closed if and only if for each $(x, y) \in (X \times Y) - G(f)$, there exist $U \in DO(X, x)$ and $V \in C(Y, y)$ such that $f(U) \cap V = \emptyset$.

Theorem 6.3.3. If $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous and Y is Urysohn then $G(f)$ is contra D-closed in $X \times Y$.

Proof. Let $(x, y) \in X \times Y - G(f)$. Then $y \neq f(x)$ and there exist open sets V, W such that $f(x) \in V, y \in W$ and $cl(V) \cap cl(W) = \emptyset$. Since f is contra D-continuous and by theorem 6.2.20, there exists $U \in DO(X, x)$ such that $f(U) \subseteq cl(V)$. Hence $f(U) \cap cl(W) = \emptyset$. Thus by lemma 6.3.2, $G(f)$ is contra D-closed in $X \times Y$. \hfill \square

Definition 6.3.4. A topological space (X, τ) is said to be strongly D-closed if every D-closed cover of X has a finite subcover.

Example 6.3.5. A $D-T_s$ strongly S-closed space is strongly D-closed.

Theorem 6.3.6. Let (X, τ) be $D-T_s$ space. If $f : (X, \tau) \to (Y, \sigma)$ has a contra D-closed graph, then the inverse image of a strongly S-closed set K of Y is closed in (X, τ).

Proof. Let K be a strongly S-closed set of Y and $x \in f^{-1}(K)$. For each $k \in K, (x, k) \notin G(f)$. By Lemma 6.3.2, there exist $U_k \in DO(X, x)$ and $V_k \in C(Y, k)$ such that $f(U_k) \cap V_k = \emptyset$. Since $\{K \cap V_k/k \in K\}$ is a closed cover of the subspace K, there exists a finite subset $K_0 \subset K$ such that $K \subset \bigcup\{V_k/k \in K_0\}$.

106
Then U is open, since X is a D-T_s space. Therefore $f(U) \cap K = \emptyset$ and $U \cap f^{-1}(K) = \emptyset$. This shows that $f^{-1}(K)$ is closed in (X, τ).

Theorem 6.3.7. If a space (X, τ) is strongly D-closed then the space is strongly S-closed.

Proof. This proof follows from the definitions of 1.3.4(7) and 6.3.4 and by theorem 2.2.2.

Theorem 6.3.8. Let (X, τ) be D-connected and (Y, σ) be a T_1-space. If $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous then f is constant.

Proof. Since (Y, σ) is a T_1 space, $\land = \{f^{-1}(y) / y \in Y\}$ is a disjoint D-open partition of X. If $|\land| \geq 2$, then X is the union of two non-empty D-open sets. Since (X, τ) is D-connected, $|\land| = 1$. Hence f is constant.

Theorem 6.3.9. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra D-continuous and pre-closed surjection. If (X, τ) is a D-T_s space, then (Y, σ) is a locally indiscrete space.

Proof. Let U be any open set of (Y, σ). Since f is contra D-continuous and (X, τ) is a D-T_s space, $f^{-1}(U)$ is closed in (X, τ). Since f is a pre-closed surjection, then U is pre-closed in (Y, σ). Therefore $cl(U) = cl(int(U)) \subset U$. Hence U is closed in (Y, σ). Thus (Y, σ) is a locally indiscrete space.
Theorem 6.3.10. If every closed subset of a space X is D-open then the following are equivalent.

1. X is S-closed
2. X is strongly S-closed

Proof. $(1) \Rightarrow (2)$ Let $\{G_{\alpha}/\alpha \in I\}$ be a closed cover of X. Then by hypothesis and by theorem 2.3.24, $\{G_{\alpha}/\alpha \in I\}$ is a regular closed cover of X. Since X is S-closed, it has a finite subcover of X. Hence X is strongly S-closed.

$(2) \Rightarrow (1)$ Let $\{G_{\alpha}/\alpha \in I\}$ be a regular closed cover of X. Since every regular closed is closed and X is strongly S-closed, it has a finite subcover of X. Hence X is S-closed. \hfill \Box

Definition 6.3.11. A topological space (X, τ) is said to be D-Ultra Hausdorff if for each pair of distinct points x and y in X there exist disjoint D-clopen sets U and V of x and y respectively.

Theorem 6.3.12. If $f : (X, \tau) \to (Y, \sigma)$ is contra D-continuous injection, where Y is Urysohn then the topological space (X, τ) is a D-Hausdorff.

Proof. Let x_1 and x_2 be two distinct points of (X, τ). Suppose $y_1 = f(x_1)$ and $y_2 = f(x_2)$. Since f is injective and $x_1 \neq x_2$ then $y_1 \neq y_2$. Since the space Y is Urysohn, there exist open sets V and W such that $y_1 \in V, y_2 \in W$ and $\text{cl}(V) \cap \text{cl}(W) = \emptyset$. Since f is contra D-continuous and by theorem 6.2.20, there exist D-open sets $Ux_1 \in DO(X, x_1)$ and
Ux_2 \in DO(X, x_2) such that f(Ux_1) \subset \text{cl}(V) and f(Ux_2) \subset \text{cl}(W). Thus we have Ux_1 \cap Ux_2 = \emptyset, since \text{cl}(V) \cap \text{cl}(W) = \emptyset. Hence (X, \tau) is a D-Hausdorff.

\textbf{Theorem 6.3.13.} If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is a contra D-continuous injection, where \(Y \) is D-ultra Hausdorff then the topological space \((X, \tau) \) is D-Hausdorff.

\textbf{Proof.} Let \(x_1 \) and \(x_2 \) be two distinct points of \((X, \tau) \). Since \(f \) is injective and \(Y \) is D-ultra Hausdorff, then \(f(x_1) \neq f(x_2) \) and also there exist clopen sets \(U \) and \(W \) in \(Y \) such that \(f(x_1) \in U \) and \(f(x_2) \in W \), where \(U \cap W = \emptyset \). Since \(f \) is contra D-continuous, \(x_1 \) and \(x_2 \) belong to D-open sets \(f^{-1}(U) \) and \(f^{-1}(W) \) respectively, where \(f^{-1}(U) \cap f^{-1}(W) = \emptyset \). Hence \((X, \tau) \) is D-Hausdorff.

\textbf{Theorem 6.3.14.} If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is continuous and \((X, \tau) \) is a locally indiscrete space, then \(f \) is contra D-continuous.

\textbf{Proof.} Let \(U \) be any open set of \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(U) \) is open in \((X, \tau) \) and since \((X, \tau) \) is locally indiscrete, \(f^{-1}(U) \) is closed in \((X, \tau) \). Hence by theorem 2.2.2, \(f^{-1}(U) \) is D-closed in \((X, \tau) \). Thus \(f \) is contra D-continuous.

\textbf{Corollary 6.3.15.} If a function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is continuous and \((X, \tau) \) is mildly Hausdorff strongly S-closed space then \(f \) is contra D-continuous.

\textbf{Proof.} It follows from Lemma 1.1.22 and theorem 6.3.14.
Theorem 6.3.16. A contra D-continuous image of a D-connected space is connected.

Proof. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra D-continuous function of a D-connected space onto a topological space Y. If possible, assume that Y is not connected. Then $Y = A \cup B$, $A \neq \emptyset$, $B \neq \emptyset$ and $A \cap B = \emptyset$, where A and B are clopen sets in Y. Since f is contra D-continuous, $X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are non-empty D-open sets in X. Hence X is not D-connected, which is a contradiction. Therefore Y is connected.

\[\square\]

Theorem 6.3.17. The image of a strongly D-closed space under a contra D-continuous surjective function is compact.

Proof. Suppose that $f : (X, \tau) \to (Y, \sigma)$ is a contra D-continuous surjection. Let $\{V_\alpha/\alpha \in I\}$ be any open cover of Y. Since f is contra D-continuous, then $\{f^{-1}(V_\alpha)/\alpha \in I\}$ is a D-closed cover of X. Since X is strongly D-closed, then there exists a finite subset I_0 of I such that $X = \bigcup\{f^{-1}(V_\alpha)/\alpha \in I_0\}$. Thus we have $Y = \bigcup\{V_\alpha/\alpha \in I_0\}$. Hence Y is compact.

\[\square\]

Theorem 6.3.18. Every strongly D-closed space (X, τ) is a compact S-closed space.

Proof. Let $\{V_\alpha/\alpha \in I\}$ be a cover of X such that for every $\alpha \in I$, V_α is open and regular closed due to assumption. Then by theorem 2.3.17,
each V_α is D-closed in X. Since X is strongly D-closed, there exists a finite subset I_0 of I such that $X = \cup\{V_\alpha / \alpha \in I_0\}$. Hence (X, τ) is a compact S-closed space.

\[\square \]

Theorem 6.3.19. The image of a D-compact space under a contra D-continuous surjective function is strongly S-closed.

Proof. Suppose that $f : (X, \tau) \rightarrow (Y, \sigma)$ is a contra D-continuous surjection. Let $\{G_\alpha / \alpha \in I\}$ be any closed cover of Y. Since f is contra D-continuous, then $\{f^{-1}(G_\alpha) / \alpha \in I\}$ is a D-open cover of X. Since X is D-compact, there exists a finite subset I_0 of I such that $X = \cup\{f^{-1}(G_\alpha) / \alpha \in I_0\}$. Thus we have $Y = \cup\{G_\alpha / \alpha \in I_0\}$. Hence Y is strongly S-closed.

\[\square \]

Theorem 6.3.20. The image of a D-compact space in any D-T_s space under a contra D-continuous surjective function is strongly D-closed.

Proof. Suppose that $f : (X, \tau) \rightarrow (Y, \sigma)$ is a contra D-continuous surjection. Let $\{G_\alpha / \alpha \in I\}$ be any D-closed cover of Y. Since Y is D-T_s space, then $\{G_\alpha / \alpha \in I\}$ is a closed cover of Y. Since f is contra D-continuous, then $\{f^{-1}(G_\alpha) / \alpha \in I\}$ is a D-open cover of X. Since X is D-compact, there exists a finite subset I_0 of I such that $X = \cup\{f^{-1}(G_\alpha) / \alpha \in I_0\}$. Thus we have $Y = \cup\{G_\alpha / \alpha \in I_0\}$. Hence Y is strongly D-closed.

\[\square \]

Theorem 6.3.21. The image of a strongly D-closed space under a D-irresolute surjective function is strongly D-closed.
Proof. Suppose that \(f : (X, \tau) \to (Y, \sigma) \) is a D-irresolute surjection. Let \(\{ G_\alpha/\alpha \in I \} \) be any D-closed cover of \(Y \). Since \(f \) is D-irresolute then \(\{ f^{-1}(G_\alpha)/\alpha \in I \} \) is a D-closed cover of \(X \). Since \(X \) is strongly D-closed, then there exists a finite subset \(I_0 \) of \(I \) such that \(X = \bigcup \{ f^{-1}(G_\alpha)/\alpha \in I_0 \} \). Thus, we have \(Y = \bigcup \{ G_\alpha/\alpha \in I_0 \} \). Hence \(Y \) is strongly D-closed.

Lemma 6.3.22. The product of two D-open sets is D-open.

Theorem 6.3.23. Let \(f : (X_1, \tau) \to (Y, \sigma) \) and \(g : (X_2, \tau) \to (Y, \sigma) \) be two functions where \(Y \) is a Urysohn space and \(f \) and \(g \) are contra D-continuous function. Then \(\{ (x_1, x_2)/f(x_1) = g(x_2) \} \) is D-closed in the product space \(X_1 \times X_2 \).

Proof. Let \(V \) denotes the set \(\{ (x_1, x_2)/f(x_1) = g(x_2) \} \). In order to show that \(V \) is D-closed, we show that \((X_1 \times X_2) - V \) is D-open. Let \((x_1, x_2) \notin V \). Then \(f(x_1) \neq g(x_2) \). Since \(Y \) is Urysohn, there exist open sets \(U_1 \) and \(U_2 \) of \(f(x_1) \) and \(g(x_2) \) such that \(cl(U_1) \cap cl(U_2) = \emptyset \). Since \(f \) and \(g \) are contra D-continuous, \(f^{-1}(cl(U_1)) \) and \(g^{-1}(cl(U_2)) \) are D-open sets containing \(x_1 \) and \(x_2 \) in \(X_1 \) and \(X_2 \). Hence by Lemma 6.3.22, \(f^{-1}(cl(U_1)) \times g^{-1}(cl(U_2)) \) is D-open. Further \((x_1, x_2) \in f^{-1}(cl(U_1)) \times g^{-1}(cl(U_2)) \subset ((X_1 \times X_2) - V) \). If follows that \((X_1 \times X_2) - V \) is D-open. Thus \(V \) is D-closed in the product space \(X_1 \times X_2 \).

Corollary 6.3.24. If \(f : (X, \tau) \to (Y, \sigma) \) is contra D-continuous and \(Y \) is a Urysohn space, then \(V = \{ (x_1, x_2)/f(x_1) = f(x_2) \} \) is D-closed in the product space \(X_1 \times X_2 \).
Theorem 6.3.25. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be a continuous function. Then \(f \) is RC-continuous if and only if it is contra D-continuous.

Proof. Suppose that \(f \) is RC-continuous. Since every RC-continuous function is contra continuous, by theorem 6.2.3, \(f \) is contra D-continuous. Conversely, let \(V \) be any open set of \((Y, \sigma) \). Since \(f \) is continuous and contra D-continuous, \(f^{-1}(V) \) is open and D-closed in \((X, \tau) \). By theorem 2.3.24, \(f^{-1}(V) \) is regular open in \((X, \tau) \). That is, \(\text{int}(\text{cl}(f^{-1}(V))) = f^{-1}(V) \). Since \(f^{-1}(V) \) is open, \(\text{int}(\text{cl}(f^{-1}(V))) = \text{int}(f^{-1}(V)) \) and so \(\text{cl}(\text{int}(f^{-1}(V))) = f^{-1}(V) \). Therefore \(f^{-1}(V) \) is regular closed in \((X, \tau) \). Hence \(f \) is RC-continuous.

\[\square \]

Theorem 6.3.26. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be perfectly D-continuous function, \(X \) be locally indiscrete space and connected. Then \(Y \) has an indiscrete topology.

Proof. Suppose that there exists a proper open set \(U \) of \(Y \). Since \(Y \) is locally indiscrete, \(U \) is a closed set of \(Y \). Therefore by theorem 2.2.2, \(U \) is a D-closed set of \(Y \). Since \(f \) is perfectly D-continuous, \(f^{-1}(U) \) is a proper clopen set of \(X \). This shows that \(X \) is not connected, which is a contradiction. Therefore \(Y \) has an indiscrete topology.

\[\square \]

Theorem 6.3.27. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is a function and \((X, \tau) \) a locally indiscrete D-\(T_s \) space, then the following statements are equivalent:

1. \(f \) is perfectly continuous.
2. f is continuous and contra continuous

3. f is continuous and contra D-continuous.

4. f is super-continuous.

Proof. (1)⇒(2) is obvious.

(2)⇒(3) by theorem 2.2.2, it is clear.

(3)⇒(4) by theorem 6.2.35, it is clear.

(4)⇒(1) Let U be any open set of (Y, σ). By assumption, $f^{-1}(U)$ is regular open in (X, τ). Since (X, τ) is a locally indiscrete space, $f^{-1}(U)$ is open and closed in (X, τ). Hence $f^{-1}(U)$ is clopen in (X, τ). Hence f is perfectly continuous. ♦

Theorem 6.3.28. Let $f : (X, \tau) \to (Y, \sigma)$ be a contra D-continuous function. Let A be an open D-closed subset of X and let B be an open subset of Y. Assume that $DC(X, \tau)$ (the class of all D-closed sets of (X, τ)) be D-closed under finite intersections. Then the restriction $f|A : (A, \tau_A) \to (B, \sigma_B)$ is a contra D-continuous function.

Proof. Let V be an open set of (B, σ_B). Then $V = B \cap K$ for some open set K in (Y, σ). Since B is an open set of Y, V is an open set in (Y, σ). By hypothesis and assumption, $f^{-1}(V) \cap A = H_1$(say) is a D-closed set in (X, τ). Since $(f|A)^{-1}(V) = H_1$, it is sufficient to show that H_1 is a D-closed set in (A, τ_A). Let G_1 be ω-open in (A, τ_A) such that $H_1 \subseteq G_1$. Then by hypothesis and by Lemma 1.1.19(2), G_1 is ω-open in (X, τ). Since H_1 is a D-closed set in (X, τ), we have $pcl_X(H_1) \subseteq int(G_1)$. Since A is open and Lemma 1.1.15, $pcl_A(H_1) =$
\[pcl_X(H_1) \cap A \subseteq \text{int}(G_1) \cap \text{int}(A) = \text{int}(G_1 \cap A) \subseteq \text{int}(G_1) \] and so \(H_1 = (f|A)^{-1}(V) \) is a \(D \)-closed set in \((A, \tau_A)\). Hence \(f|A \) is a contra \(D \)-continuous function.

\[\square \]

Theorem 6.3.29. If a topological space \((X, \tau)\) is locally indiscrete space then compactness and strongly \(D \)-closedness are the same.

Proof. Let \((X, \tau)\) be a compact space. Since \((X, \tau)\) is a locally indiscrete space, then every open set is closed and by theorem 2.2.2, compactness and strongly \(D \)-closedness are the same in a locally indiscrete topological space. \(\square \)