List of Contents

List of tables

List of schemes

List of figures

Abbreviations

Abstract of thesis

Section No. Title Page No.

Chapter 1: Introduction

1. Catalysis 1

1.1 Homogeneous catalysis 3

1.2 Heterogeneous catalysis 4

1.3 Catalyst preparation methods 5

1.3.1 Simultaneous co-precipitation and digestion 6

1.3.2 Sol-gel 7

1.3.3 Thermal decomposition 10

1.4 Green chemistry 10

1.5 Oxidation 13

1.5.1 Molecular oxygen as an oxidizing agent 17

1.5.2 Activation of oxygen by transition metal complexes 21

1.6 Oxidation of lignin derived phenolic and non-phenolic model compounds 22

1.7 Solid materials for catalytic oxidation 24

1.7.1 Metal oxides 24

1.7.1.1 Spinel oxides 24
1.8 Quantitative measurement of the catalyst performance

1.8.1 Turnover number 28
1.8.2 Turnover frequency 28
1.8.3 Conversion 28
1.8.4 Yield 29
1.8.5 Selectivity 29

1.9 Literature summary on oxidation of lignin model compounds and derivatives

1.10 Scope and objective of the present investigation

1.11 References

<table>
<thead>
<tr>
<th>Chapter 2: Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Materials 49</td>
</tr>
<tr>
<td>2.2 Catalyst preparation 49</td>
</tr>
<tr>
<td>2.2.1 Simultaneous co-precipitation and digestion method 49</td>
</tr>
<tr>
<td>2.2.1.1 Co_3O_4 50</td>
</tr>
<tr>
<td>2.2.1.2 Zn doped Co_3O_4 51</td>
</tr>
<tr>
<td>2.2.1.3 Al doped Co_3O_4 52</td>
</tr>
<tr>
<td>2.2.2 Sol-Gel method 52</td>
</tr>
<tr>
<td>2.2.3 Thermal decomposition 53</td>
</tr>
<tr>
<td>2.2.4 Metal aluminosilicate catalysts 53</td>
</tr>
<tr>
<td>2.3 Physico-chemical characterization 54</td>
</tr>
<tr>
<td>2.3.1 BET Surface area 55</td>
</tr>
<tr>
<td>2.3.2 X-ray diffraction (XRD) 56</td>
</tr>
<tr>
<td>2.3.3 X-ray photoelectron spectroscopy (XPS) 59</td>
</tr>
</tbody>
</table>
2.3.4 Extended X-ray absorption fine structure spectroscopy (EXAFS) 61
2.3.5 Thermal gravimetric analysis (TGA) 62
2.3.6 Fourier transform-infrared (FTIR) spectroscopy 63
2.3.7 Transmission electron microscopy 64
2.3.8 Scanning electron microscopy and Energy dispersive X-ray (SEM and EDX) 65
2.3.9 Diffuse reflectance UV-visible spectroscopy (DRUV) 66
2.3.10 Electron paramagnetic resonance (EPR) spectroscopy 67
2.3.11 Redox ability measurement 68
 2.3.11.1 Temperature programmed reduction/ Temperature programmed oxidation (TPR/TPO). 68
 2.3.11.2 Cyclic voltammogram 69

2.4 High pressure reactor set up for liquid phase oxidation reactions 70
2.5 Analytical method 71
2.6 References 73

Chapter 3: Effect of preparation methods on physico-chemical properties and activity of Co₃O₄ catalyst for oxidation of lignin sub-structured compounds

3.1 Introduction 79
3.2 Experimental 80
3.3 Results and discussion 81
 3.3.1 Co₃O₄ prepared by simultaneous co-precipitation and digestion method 81
 3.3.1.1 BET surface area 81
 3.3.1.2 X-ray diffraction (XRD) 87
 3.2.1.3 X-ray photoelectron spectroscopy (XPS) 91
 3.2.1.4 Fourier transform extended X-ray absorption fine structure (FT-EXAFS) 95
3.2.1.5 Thermo gravimetric analysis (TGA) 95
3.2.1.6 Fourier transform infrared spectroscopy (FT-IR) 97
3.2.1.7 High resolution transmission electron microscopy (HR-TEM) 99
3.2.1.8 Energy dispersive X-ray (EDX) 101
3.2.1.9 Temperature programmed reduction / Temperature programmed oxidation (TPR/TPO) 102
3.2.1.10 Cyclic voltammogram (CV) 107
3.2.1.11 Electron paramagnetic resonance (EPR) 110

3.3.2 Co$_3$O$_4$ preparation by sol-gel method 111
3.3.2.1 BET surface area 111
3.3.2.2 X-ray diffraction (XRD) 112
3.3.2.3 X-ray photoelectron spectroscopy (XPS) 113
3.3.2.4 Thermo gravimetric analysis (TG-DTA) 115
3.3.2.5 Fourier transform infrared spectroscopy (FT-IR) 116
3.3.2.6 High resolution transmission electron microscopy 117
3.3.2.7 Temperature programmed reduction / Temperature programmed oxidation (TPR/TPO) experiment 119

3.3.3 Co$_3$O$_4$ preparation by thermal decomposition method 122
3.3.3.1 BET surface area 122
3.3.3.2 X-ray diffraction (XRD) 123
3.3.3.3 X-ray photoelectron spectroscopy (XPS) 125
3.3.3.4 Thermo gravimetric analysis (TGA) 126
3.3.3.5 Fourier transform infrared spectroscopy (FT-IR) 129
3.3.3.6 High resolution transmission electron microscopy 130
3.3.3.7 Temperature programmed reduction / Temperature 133
programmed oxidation (TPR/TPO) experiment

3.3.4 Activity measurement

3.3.4.1 Screening of catalysts

3.3.4.2 Effect of catalyst preparation parameters

3.3.4.2.1 Effect of calcination temperature

3.3.4.2.2 Effect of calcination time

3.2.4.3 Effect of reaction variables

3.3.4.3.1 Effect of temperature

3.3.4.3.2 Conversion and product distribution with time

3.3.4.3.3 Effect of pressure

3.3.4.3.4 Effect of catalyst loading

3.3.4.3.5 Effect of solvent

3.3.4.3.6 Catalyst recycles studies

3.3.4.4 Substrate screening

3.3.4.5 Reaction mechanism

3.4 Conclusions

3.5 References

Chapter 4: Zn and Al doped Co$_3$O$_4$ catalysts for oxidation of veratryl alcohol

4.1 Introduction

4.2 Results and discussion

4.2.1 Zn doped Co$_3$O$_4$

4.2.1.1 BET surface area

4.2.1.2 X-ray diffraction (XRD)

4.2.1.3 X-ray photoelectron spectroscopy (XPS)

4.2.1.4 Thermo gravimetric analysis (TGA)
5.2.1 N₂ adsorption isotherm 202
5.2.2 X-ray diffraction (XRD) 208
5.2.3 X-ray photoelectron spectroscopy (XPS) 211
5.2.4 Diffuse reflectance UV-visible spectroscopy 212
5.2.5 Thermo gravimetric analysis (TGA) 215
5.2.6 Fourier transform infrared spectroscopy (FTIR) 217
5.2.7 Scanning electron microscope (SEM) and energy dispersive X-ray (EDX) 218
5.2.8 Transmission electron microscopy 224
5.2.9 Temperature programmed reduction / Temperature programmed oxidation (TPR/TPO) 225
5.2.10 Cyclic voltammogram (CV) 228
5.2.11 Fourier transform extended X-ray absorption fine structure (EXAFS) 229

5.3 Activity measurement 231

5.3.1 Catalyst screening 234
 5.3.1.1 Effect of different transition elements 234
 5.3.1.2 Effect of cobalt loading 235
 5.3.1.3 Effect of Si:Al ratio on activity 236
5.3.2 Effect of catalyst pretreatment conditions 237
 5.3.2.1 Effect of calcination temperature 237
 5.3.2.2 Effect of calcination time 239
5.3.3 Optimization of reaction conditions 240
 5.3.3.1 Effect of NaOH concentration 240
 5.3.3.2 Effect of temperature 241
 5.3.3.3 Effect of pressure 243
5.3.3.4 Effect of catalyst loading 244
5.3.3.5 Solvent screening 245
5.3.3.6 Reusability and stability experiment 245

5.4 Conclusions 247
5.5 References 249

<table>
<thead>
<tr>
<th>Chapter 6</th>
<th>Summary and conclusions 254</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of publications 256</td>
</tr>
</tbody>
</table>