List of Tables

3.1(a) Digit recognition obtained for first input image set using the first template image set .. 36

3.1(b) Digit recognition obtained for second input image set using the first template image set .. 36

3.1(c) Digit recognition obtained for third input image set using the first template image set .. 36

3.1(d) Digit recognition obtained for fourth input image set using the first template image set .. 36

3.1(e) Digit recognition obtained for fifth input image set using the first template image set .. 37

3.2(a) Digit recognition obtained for first input image set using the second template image set .. 37

3.2(b) Digit recognition obtained for second input image set using the second template image set .. 37

3.2(c) Digit recognition obtained for third input image set using the second template image set .. 37

3.2(d) Digit recognition obtained for fourth input image set using the second template image set .. 38

3.2(e) Digit recognition obtained for fifth input image set using the second template image set .. 38

4.1 Best cluster sizes and lowest misclassification error percentages attained by the K-means and FCM clustering algorithms for the Iris, Cancer, Wine, SODAR1, Data_5_2 and Data_9_2 data sets 66

4.2 Iteration counts and execution times (in seconds) for the K-means and FCM clustering algorithms ... 68

4.3 Comparison of objective function values obtained by the K-means and FCM algorithms for the Iris and Cancer data sets for varying number of clusters .. 69

4.4 Number of clusters obtained by the PBM, XB, DI, SC and DB validity indices, using the K-means algorithm .. 69
4.5 Values of the PBM, XB, DI, SC and DB validity indices, for $K = 2, 3, \ldots, 10$ for the Iris, Cancer and Wine data sets using the K-means algorithm ... 70

4.6 Values of the PBM, XB, DI, SC and DB validity indices, for $K = 2, 3, \ldots, 10$ for the SODAR1, SODAR2 and Data_3_2 data sets using the K-means algorithm ... 71

4.7 Values of the PBM, XB, DI, SC and DB validity indices, for $K = 2, 3, \ldots, 10$ for the Data_5_2, Data_6_2 and Data_9_2 data sets using the K-means algorithm ... 72

4.8 Values of the PBM, XB, DI, SC and DB validity indices, for $K = 2, 3, \ldots, 10$ for the Data_10_2, Data_4_3 and Ruspini data sets using the K-means algorithm ... 73

4.9 Number of clusters obtained by the $PBMF, XB, PC, MPC$ and CE validity indices, using the FCM algorithm ... 74

4.10 Values of the $PBMF, XB, PC, MPC$ and CE validity indices, for $c = 2, 3, \ldots, 10$ for the Iris, Cancer and Wine data sets using the FCM algorithm ... 75

4.11 Values of the $PBMF, XB, PC, MPC$ and CE validity indices, for $c = 2, 3, \ldots, 10$ for the SODAR1, SODAR2 and Data_3_2 data sets using the FCM algorithm ... 76

4.12 Values of the $PBMF, XB, PC, MPC$ and CE validity indices, for $c = 2, 3, \ldots, 10$ for the Data_5_2, Data_6_2 and Data_9_2 data sets using the FCM algorithm ... 77

4.13 Values of the $PBMF, XB, PC, MPC$ and CE validity indices, for $c = 2, 3, \ldots, 10$ for the Data_10_2, Data_4_3 and Ruspini data sets using the FCM algorithm ... 78

4.14 Optimal number of clusters considered for the natural images .. 82

4.15 Comparison of K-means and Fuzzy c-means clustering algorithms 91

5.1 Procedure to partition the hyper-volume of original data set X into bpr^d unit hyper-blocks ... 100

5.2 Procedure to compute centroids of top K dense unit hyper-blocks 101
5.3 Comparison of values obtained for the \(PBM \) index by the HBDKM clustering algorithm for the optimal set of initial centroids, \(cen_opt \), and for the final clustering results ... 104

5.4 Comparison of no. of iterations and average execution times of one trial of HBDKM and K-means algorithms for obtaining the final optimal clustering results .. 104

6.1 Procedure to construct a \(k \)-d tree ... 114

6.2 Procedure to partition a data set \(X \) by simulating the creation of a nonhomogeneous \(k \)-d tree up to a maximum depth \(maxd \) starting at \(depth = 0 \) ... 119

6.3 Procedure to obtain the optimal centroid set \(cen_opt2 \) from the \(M \times (k+1) \) matrix \(T \) .. 120

6.4 Comparison of values obtained for \(PBMF \) validity index by DpsFCM, pshFCM and psFCM clustering algorithms for their corresponding optimal set of initial centroids .. 122

6.5 Comparison of values obtained for \(PBMF \) validity index by DpsFCM, pshFCM and psFCM clustering algorithms for final clustering results 122

6.6 Comparison of iteration counts of one deterministic trial of DpsFCM with those for the first best trials of pshFCM, psFCM and FCM algorithms for obtaining the final clustering for the actual number of clusters in all the data sets .. 123

6.7 Comparison of average execution times of one trial of DpsFCM, pshFCM, psFCM and FCM algorithms for obtaining the final optimal clustering results ... 123

6.8 Comparison of total execution times of 50 trials for pshFCM, psFCM and FCM algorithms, for the actual number of clusters in all the data sets ... 124

7.1 Comparison of values obtained for \(PBM \) and \(kPBM \) validity indices by K-means clustering algorithm for \(K = 2, 3, \ldots, 10 \) for Iris and Cancer data sets ... 132

7.2 Comparison of values obtained for \(PBMF \) and \(kPBMF \) validity indices by FCM clustering algorithm for \(c = 2, 3, \ldots, 10 \) for Iris and Cancer data sets ... 132
7.3 Comparison of average computation times for PBM and $kPBM$ validity indices using the K-means clustering algorithm ... 133

7.4 Comparison of average computation times for $PBMF$ and $kPBMF$ validity indices using the FCM clustering algorithm ... 133