Table of Contents

<table>
<thead>
<tr>
<th>Chapter 1 : General Introduction</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Renewable Energy: Rationale and Significance</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Historical Development of Lubricants</td>
<td>3</td>
</tr>
<tr>
<td>1.3. Lubricants and their Consumption</td>
<td>3</td>
</tr>
<tr>
<td>1.4. Types of Lubricants</td>
<td>5</td>
</tr>
<tr>
<td>1.4.1. Solid Lubricants</td>
<td>5</td>
</tr>
<tr>
<td>1.4.2. Aqueous Lubrication</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3. Base Oil</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3.1. Refined Mineral Base Oils</td>
<td>5</td>
</tr>
<tr>
<td>1.4.3.2. Synthetic Base Oils</td>
<td>6</td>
</tr>
<tr>
<td>1.4.3.3. Vegetable Oils</td>
<td>6</td>
</tr>
<tr>
<td>1.5. Chemical Modification of Vegetable Oil</td>
<td>12</td>
</tr>
<tr>
<td>1.5.1. Modifications of the Carboxyl Group</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1.1. Transesterification/ Esterification</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2. Modifications of the Fatty Acid Chain</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.1. Hydrogenation</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2.2. Dimerization/Oligomerisation/Estolide</td>
<td>15</td>
</tr>
<tr>
<td>1.5.2.3. Oxidation/Epoxidation</td>
<td>16</td>
</tr>
<tr>
<td>1.6. Biolubricant</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1. Properties of Lubricants and their Significance</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1.1. Viscosity</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1.2. Viscosity Index</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.3. Pour Point</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.4. Cloud Point</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.5. Flash Point</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.6. Fire Point</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.7. Acid Number or Neutralization Number</td>
<td>18</td>
</tr>
<tr>
<td>1.6.1.8. Saponification Number</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter 2: Experimental Methodology: Catalyst Preparation and Characterization Techniques

2.1. Introduction 31
2.2. Catalyst preparation 31
 2.2.1. Double-Metal Cyanide Complex: Fe-Zn DMC 31
 2.2.2. Mesoporous Titanosilicate Molecular Sieves 32
 2.2.2.1. SBA-12 33
 2.2.2.2. Ti-SBA-12 33
 2.2.2.3. SBA-16 33
 2.2.2.4. Ti-SBA-16 33
 2.2.3. Zirconium Phenyl Phosphonate Phospnate 34
2.3. Catalyst Characterization Techniques 34
 2.3.1. X-ray Powder Diffraction 34
 2.3.2. Nitrogen Physisorption 35
 2.3.3. Fourier Transform Infrared Spectroscopy 36
 2.3.4. Diffuse Reflectance UV-Visible Spectroscopy 36
 2.3.5. Temperature-Programmed Desorption of Ammonia 37
 2.3.6. Thermal Analysis 37
 2.3.7. Scanning Electron Microscopy 38
 2.3.8. Transmission Electron Microscopy 38
2.4. Reaction Procedure 39
Chapter 2: Esterification and Transesterification Reactions

2.4.1. Esterification Reactions 39
2.4.2. Transesterification Reactions 40

2.5. Product Analysis 40
2.5.1. High Performance Liquid Chromatography 40
2.5.2. Determination of Acid Value 41

2.6. Conclusions 42
2.7. References 42

Chapter 3: Fe–Zn Double-Metal Cyanide Catalyst for Esterification of Fatty Compounds with Glycerol and Long-chain Alcohol 46

3.1. Introduction 47
3.2. Experimental 49
3.2.1. Material Preparation 49
3.2.2. Characterization Techniques 49
3.2.3. Reaction Procedure 50
3.2.3.1. Esterification of FA with Glycerol 50
3.2.3.2. Esterification of Methyl Oleate with Long-chain Monohydric Alcohol 50

3.3. Results and Discussion 51
3.3.1. Structural Characterization 51
3.3.1.1. X-ray Powder Diffraction 51
3.3.1.2. Fourier Transform Infrared Spectroscopy 51
3.3.1.3. N2-Physisorption 53
3.3.1.4. Scanning Electron Microscopy and High-resolution Transmission Electron Microscopy 54
3.3.1.5. Temperature-Programmed Desorption of Ammonia 55
3.3.2. Catalytic Activity 55
3.3.2.1. Esterification of FA with Glycerol 55
3.3.2.1.1. Effect of Molar Ratio of Reactants 56
3.3.2.1.2. Influence of Reaction Temperature 57
3.3.2.1.3. Influence of Reaction Time 57

VII
3.3.2.1.4. Influence of FA Chain Length 58
3.3.2.1.5. Influence of Addition of Water to Reaction mixture 59
3.3.2.1.6. Influence of Catalyst Amount 60
3.3.2.1.7. Influence of Synthesis Temperature 60
3.3.2.1.8. Catalyst Reusability 61
3.3.2.2. Transestrification of Methyl oleate with 2-Ethyl-1-hexanol 62
 3.3.2.2.1. Effect of Catalyst Amount 63
 3.3.2.2.2. Effect of Molar Ratio of Reactants 63
 3.3.2.2.3. Effect of Reaction Temperature and Time. 64
 3.3.2.2.4. Transesterification of MO with Different Alcohols 65
 3.3.2.2.5. Catalyst Reusability 66
 3.3.2.2.6. Tentative Reaction Mechanism 69

3.4. Conclusions 69
3.5. References 70

Chapter 4: Three-Dimensional Mesoporous Titanosilicates as Catalysts for Synthesis of Fatty Acid Polyol Esters

4.1. Introduction 74
4.2. Experimental 75
4.3. Results and Discussion 75
 4.3.1. Structural Characterization 75
 4.3.1.1. X-ray Powder Diffraction 75
 4.3.1.2. Diffuse Reflectance UV-Visible Spectroscopy 76
 4.3.1.3. N2-Physisorption 76
 4.3.1.4. 29Si Magic-Angle Spinning Nuclear Magnetic Resonance 76
 4.3.2. Catalytic Activity 77
 4.3.2.1. Esterification of OA with Glycerol 77
 4.3.2.1.1. Influence of Molar Ratio of Reactants 77
 4.3.2.1.2. Influence of Reaction Temperature 79
4.3.2.1.3. Influence of Reaction Time 80
4.3.2.1.4. Influence of Catalyst Amount 80
4.3.2.1.5. Catalyst Reusability 80
4.3.2.2. Esterification of Oleic Acid with Different Polyols 80
4.3.2.2.1. Effect of Reaction Parameters 85

4.4. Conclusions 87
4.5. References 88

Chapter 5: Zirconium Phenyl Phosphonate Phosphite as a Highly Active Solid Acid Catalyst for Producing Fatty Acid Polyol Esters

5.1. Introduction 92
5.2. Experimental 93
5.3. Results and Discussion 94
5.3.1. Structural Characterization 94
5.3.1.1. X-ray Powder Diffraction 94
5.3.1.2. Fourier Transform Infrared Spectroscopy 95
5.3.1.3. ^{31}P Magic-Angle Spinning Nuclear Magnetic Resonance 96
5.3.1.4. Thermal Gravimetric Analysis 97
5.3.1.5. N_2-Physisorption 98
5.3.1.6. NH_3-TPD 98
5.3.2. Catalytic Activity 100
5.3.2.1. Influence of Phosphorous Acid/Phenyl Phosphonic Acid Molar Ratio 100
5.3.2.2. Influence of Molar Ratio 101
5.3.2.3. Influence of Reaction Time and Temperature 101
5.3.2.4. Influence of Catalyst Amount 105
5.3.2.5. Influence of Chain Length of FA 105
5.3.2.6. Catalyst Reusability 106

5.4. Conclusions 108
5.5. References 109