Scope for the future work
Chapter 9

Scope for the future work

9.0 Introduction ... 243
9.1 Chemical warfare ... 244
9.2 Chemical warfare/weapon agent (CWA) 244
9.3 CWA simulants ... 245
9.4 Preparation of simulant of CWA ... 246
9.5 Ultrasonic atomization technique for preparation of nanocrystalline powder ... 247
9.6 Thin films by using USP (For nanostructured thin films) 248
9.7 Conclusions ... 249
References .. 250
<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 9.1</td>
<td>Ultrasonic atomization technique for the preparation of nanocrystalline powders.</td>
<td>247</td>
</tr>
<tr>
<td>Fig. 9.2</td>
<td>Ultrasonic spray pyrolysis technique for the preparation of nanostructured thin films.</td>
<td>249</td>
</tr>
</tbody>
</table>

Table Captions

<table>
<thead>
<tr>
<th>Tabel 9.1</th>
<th>Examples of the highly toxic chemical agents.</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 9.2</td>
<td>Agent, chemical gas, simulant and treatment to prepare their gas.</td>
<td>246</td>
</tr>
</tbody>
</table>
9.0 Introduction

In the present thesis, we have prepared nanostructured ZnO powder and thin films by chemical routes, hydrothermal method and spray pyrolysis technique. The prepared powder and thin films were characterized by using different techniques such as XRD, SEM, TEM and UV-visible spectroscopy to correlate with their gas sensing performance towards hazardous and toxic conventional gases such as H₂S, NH₃, LPG, CO, CO₂, O₂, H₂, ethanol and Cl₂.

In this work we tried to prepare nanocrystalline materials and thin films by using chemical routes, hydrothermal method and SPT. These films and materials were analyzed and tested to various gases. The unique data and results have been published in referred journals. But to achieve monodispersed nanocrystalline materials and thin films remains a challenge for us. There are reports to prepare monodispersed nanocrystalline materials and thin films by using ultrasonic atomization technique and ultrasonic spray pyrolysis (USP) technique [1, 2]. Moreover, nowadays due to increased threat of international terrorism and their use of toxic chemical attack, societies need to pay more attention on protecting their citizens from attack of toxic chemicals, either by accident or terrorist act. Therefore fast detection and identification of toxic chemicals is crucial for efficient protection of citizens.

Therefore, it is our future aim to produce nanocrystalline materials/ films by using ultrasonic atomization technique and USP; and plan to test the chemical warfare agents.

The toxic chemical threats can be classified into two basic types: chemical warfare agents (CWA) and toxic industrial chemicals (TIC) as shown in detail in Table 9.1. Especially the threat of TICs has been widely realized in the recent years. That is due to their easy availability due to wide industrial use. Although CWAs are gradually more toxic and thus more dangerous than TICs, the CWA threat is reducing since in 1997 by more than 160 nations ratified the chemical weapons convention (CWC). That convention prohibits the development, production, stockpiling and use of CWAs as well as many of their precursors. Moreover, nations who are members of the Organization for the Prohibition of Chemical Weapons (OPCW) are banned from trading with nations, which did not sign the convention. Nevertheless, well-trained terrorists may still obtain
chemical weapons - either by synthesizing themselves or from the nations which do not belong to the OPCW.

9.1 Chemical warfare

Chemical warfare (CW) involves using the toxic properties of chemical substances as weapons. This type of warfare is distinct from Nuclear warfare and Biological warfare, which together make up NBC, the military acronym for Nuclear, Biological, and Chemical (warfare or weapons). Neither of these falls under the term conventional weapons which are primarily effective due to their destructive potential. Chemical warfare does not depend upon explosive force to achieve an objective. Rather it depends upon the unique properties of the chemical agent weaponized. A lethal agent is designed to injure or incapacitate the enemy. Defoliants are used to quickly kill vegetation and deny its use for cover and concealment. It can also be used against agriculture and livestock to promote hunger and starvation. With proper protective equipment, training, and decontamination measures, the primary effects of chemical weapons can be overcome. Many nations possess vast stockpiles of weaponized agents in preparation for wartime use. The threat and the perceived threat have become strategic tools in planning both measures, and counter–measures.

9.2 Chemical warfare/weapon agent (CWA)

A chemical warfare/weapon agent (CWA) is a chemical substance whose toxic properties are used to kill, injure or incapacitate. About 70 different chemicals have been used or stockpiled as chemical weapon agents during the 20th century. These agents may be in liquid, gas or solid form.

Furthermore, in the case CWAs, OPCW provides 43 chemical groups or specific chemicals in three schedules. All together, the request for number of chemical agents to be detected and identified by CWA-TIC detector raises easily over 150 agents providing an extreme challenge for the detector developers. Fortunately, many suitable sensor and spectrometer technologies have been demonstrated and are also available in the market. Detectors deploy for example ion mobility spectrometers, IR spectrometers, flame photometric detectors, solid-state gas sensors and electrochemical sensors and their combinations. Basic key figures of these CWA-TIC detectors are detection, identification
and quantification performance. Also response time can be considered as a key figure. Other favoured features are the capability of continuous operation, low weight, small size and ease of operation. However, any of the CWA-TIC detectors available in the market today does not meet all the requirements regarding detection and identification performance and other technical challenges. Therefore, there is still significant need for further technology development.

Table 9.1: Examples of the highly toxic chemical agents.

<table>
<thead>
<tr>
<th>CWA, chemical warfare agent</th>
<th>Nerve agents (e.g. sarin, soman, tabun and VX)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Blister agents (e.g. sulfur mustard, lewisite)</td>
</tr>
<tr>
<td></td>
<td>Choking and blood agents (e.g. phosgene, cyanide)</td>
</tr>
<tr>
<td>TIC, toxic industrial chemical</td>
<td>Common toxic chemicals e.g. ammonia, hydrogen cyanide, various inorganic acids, formaldehyde, chlorine</td>
</tr>
<tr>
<td></td>
<td>Less-common highly toxic chemicals e.g. isocyanates, pesticides</td>
</tr>
<tr>
<td></td>
<td>Less-toxic highly volatile chemicals e.g. benzene, toluene, acrylonitrile</td>
</tr>
</tbody>
</table>

9.3 CWA Simulants

CWAs are highly toxic and their use is restricted. Research on the environmental fate of CWAs is often conducted using simulant compounds [3-12]. An ideal chemical agent simulant would mimic all relevant chemical and physical properties of the agent without its associated toxicological properties. Although a number of compounds have been used as CWA simulants, no individual compound is ideal because a single simulant cannot satisfactorily represent all environmental fate properties of a given CWA. Thus, a number of different chemicals have been used as CWA simulants depending on the physical and chemical properties of interest.

9.3.1 DMMP

Dimethyl methylphosphonate, or methylphosphonic acid dimethyl ester (DMMP), is a colorless liquid. It is combustible. It emits a distinct odour. It can be found in household radiators, especially those installed in the former Soviet Bloc. In contact with water it slowly undergoes hydrolysis. Dimethyl methylphosphonate is not classified as toxic, but
is harmful if inhaled, swallowed or absorbed through the skin; it is a chemical used in the synthesis of sarin nerve gas. It can also be used standalone as a simulant for sarin training exercises and for calibration of detectors. It is a suspected carcinogen. Dimethyl methyl phosphonate (DMMP) is simulant of G-agent simulants [13]. The chemical formula of DMMP is \(\text{C}_3\text{H}_9\text{O}_3\text{P} \) or \(\text{CH}_3\text{PO(OCH}_3)_2 \) and represented as:

\[
\begin{align*}
\text{H}_3\text{C} & \text{---P---O} \\
& \text{CH}_3 \\
& \text{O} -- \text{C}_\text{H}_3
\end{align*}
\]

9.3.2 CEES

Chloroethyl ethyl sulfide (CEES) is simulant of Sulphur Mustard (HD). CEES contains a single chlorine atom on the \(\beta \) carbon relative to the sulfur atom (mustard is 2, 2-dichlorodiethyl sulfide). The 2-CEES molecule is much less toxic. Thus, it is expected that 2-CEES closely mimics the reactivity of mustard gas [14]. The chemical formula of CEES is \(\text{C}_4\text{H}_9\text{ClS} \) and represented as:

\[
\begin{align*}
\text{H}_3\text{C} & \text{---S---Cl} \\
& \text{H}_3\text{C}
\end{align*}
\]

9.3.3 CEPS

2-chloroethyl phenyl sulfide (CEPS) is simulant of Distilled Mustard (HD). It is also called half-mustard (HM), to simulate HD in a study of CWA removal from water using activated carbon filters [15]. The CEPS molecule is much less toxic. Thus, it is expected that CEPS closely mimics the reactivity of mustard gas. The chemical formula of CEPS is \(\text{C}_8\text{H}_9\text{ClS} \) and it is represented as:

\[
\begin{align*}
\text{S} & \text{---Cl} \\
\text{C}_8\text{H}_9\text{ClS}
\end{align*}
\]

9.4 Preparation of simulant of CWA

The real chemical warfare agents are very dangerous and difficult to handle. Therefore, simulants with very low toxicity or with no toxicity with similar chemical characteristics (shown in Table 9.2) were used to develop the sensors for their detection.
Table 9.2: Agent, chemical gas, simulant and treatment to prepare their gas.

<table>
<thead>
<tr>
<th>Agent</th>
<th>Chemical gas</th>
<th>Simulant</th>
<th>Treatment</th>
<th>Simulant gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nerve Sarin (GB)</td>
<td>dimethyl methyl phosphonate</td>
<td>Heating DMMP</td>
<td>Heating</td>
<td>Simulant gas</td>
</tr>
<tr>
<td>Blister Distilled mustard (HD)</td>
<td>2-chloroethyl phenyl sulfide 2-chloroethyl ethyl sulfide</td>
<td>Heating</td>
<td>Heating</td>
<td>CEPS CEES</td>
</tr>
</tbody>
</table>

The simulants listed in Table 9.2 are in liquid phase. 0.5 µl of simulant to be tested was converted completely into vapors and maintained in vapor form by heating constantly at 70 °C in 250 ml airtight conical flask. With 0.5 µl of simulant in 250 ml airtight conical flask would be 2 ppm concentration of simulant. So obtained simulant (2 ppm) vapors were then used to test the sensors. The gaseous form (vapors) of 2 ppm simulant were injected in static sensing system using syringe having capacity of 20 ml and exposed on to the sensor surface at various temperatures.

9.5 **Ultrasonic atomization technique for preparation of nanocrystalline powder**

Although, preparation of more focused narrow band nanostructured ZnO powder and thin films is found to be challenge. This challenge can be achieved by adopting sophisticated techniques such as ultrasonically preparation of ZnO powder and thin films. There are reports regarding the ultrasonically prepared nanostructured MOS gas sensors.

The ultrasonic atomization technique as shown in Fig. 9.1 is composed of following major components [1, 16]:

![Ultrasonic atomization technique for the preparation of nanocrystalline powders](image)

Fig. 9.1: Ultrasonic atomization technique for the preparation of nanocrystalline powders [16].
i) **Reservoir:** The reservoir is made up of cylindrical glass vessel. The cylindrical glass vessel contains maximum 1000 ml solution. The stock solution was stored in cylindrical glass vessel.

ii) **Ultrasonic atomizer:** Ultrasonic atomizer (2.1 – 2.3 MHz Gapusol 9001 RB1 Meylan, France) with three transducers for making aerosol of initial salt solution.

iii) **Quartz reactor:** The quartz reactor is used for the pyrolysis reaction. The quartz tube is 40 mm in diameter and 120 mm in length.

iv) **Reaction furnace:** The two zone furnace (evaporation and pyrolysis zone) with quartz reactor. The operating temperature of the furnace is set up to 1200°C.

v) **Novel trapping system:** The novel trapping system consisted of series of interconnected four glass traps with each trap filled with water up to 3/4\(^{th}\) of its height. Dimensions of each trap were identical. The exit end of quartz reactor was connected to first trap of trapping system as depicted in Figure 1. Heavier particles went deep into the water column along with aerosol carrier (air / oxygen). Heavier particles could settle down into the water and resided there itself but the lighter would bubbled out of water with carrier and reach to next trap. Of these particles, heavier could remain and lighter would go to next trap. In this way, smaller particles with narrow particle size distribution could reach last trap. In this way trapping system was employed to sort out the particles size wise.

9.6 Thin films by using ultrasonic spray pyrolysis setup (For nanostructured thin films)

The schematic block diagram of ultrasonic spray pyrolysis technique for thin is shown in Fig. 9.2. This consist of: Bench table, Spraying chamber, X-Y scanner, Ultrasonic spray nozzle, Ultrasonic generator, Syring pump, Spraying solution, Glass substrate, Control panel, Electrical heater, Bronze block, Thermocouple, Temperature indicator, Exhaust fan.
Ultrasonic spray pyrolysis technique involves spraying a solution (fine mist or aerosol), usually aqueous, containing soluble salts of the constituents atoms of desired compound onto a substrate maintained at elevated temperature. The sprayed mist reaching a hot substrate surface undergoes pyrolytic decomposition and form a single crystallite or clusters of crystallites of product. The other volatile by-products and the excess solvent escape in the vapor phase. The substrate provides thermal energy for thermal decomposition and subsequent recombination of the constituent species followed by sintering and re-crystallization of clusters of the crystallite giving rise to coherent film.

9.7 Conclusions

We successfully prepared nano ZnO materials and tested their gas sensing performance towards hazardous and toxic conventional gases such as H₂S, NH₃, LPG, CO, CO₂, O₂, H₂, ethanol and Cl₂. We tried to prepare nanocrystalline thin films by using SPT and tested their various properties with unique results; few of them are published in referred journals too. But we could not achieve the monodispersed nanocrystalline thin films by this SPT. So, it is our future aim to produce nanocrystalline thin films by using USP and try to detect the chemical warfare agents. Therefore, we are going to plan to prepare monodispersed nanocrystalline materials and thin films by using USP to overcome the difficulties encountered in the work which has been presented in the thesis.
References
