REFERENCES


Bertoni MS (1899). Revista de Agronomia de l'Assomption. 1: 35.


Blumenthal M (1996). Perspectives of FDA'S new Stevia Policy, After four years, the agency lifts its ban-but only partially, Whole Foods.


Cai X, Hagedorn CH and Cullen BR (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA. 10: 1957-1966.


References

7.


211
diabetic fatty rats. Metabolism. 54: 1181-1188.


References

Fujita SI, Taka K and Fujita Y (1977). Miscellaneous contributions to the essential 
oils of plants from various territories. XLI. On the components of the essential 

expression of osa-MIR396c decreases salt and alkali stress tolerance. Planta. 
231: 991–1001.


sequencing of small RNAs and analysis of differentially expressed 
microRNAs associated with pistil development in Japanese apricot. BMC 

Garcia DA (2008). miRacle in plant development: Role of microRNAs in cell 

AC, Finn RD, Griffiths-Jones S, Eddy SR and Bateman A (2009). Rfam: 
updates to the RNA families database. Nucleic Acids Res. 37(Database 

Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV and Wu RJ 
(2002). Trehalose accumulation in rice plants confers high tolerance levels to 

Geuns JM, Buyse J, Vankeirsbilck A and Temme EH (2007). Metabolism of 


in pigs and intestinal absorption characteristics of stevioside, rebaudioside A 

Ghawana S, Paul A, Kumar H, Kumar A, Singh H, Bhardwaj PK, Rani A, Singh RS, 


215


Jeppesen PB, Gregersen S, Rolfson SED, Jepsen M, Colombo M, Agger A, Xiao J,


References


Klevebring D, Street NR, Fahlgren N, Kasschau KD, Carrington JC, Lundeberg J and


Kurihara Y, Takashi Y and Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA. 12: 206–212.


References


Matsui M and Matsui KY (1996). Evaluation of the genotoxicity of stevioside and...
steviol using six in vitro and one in vivo mutagenicity assays. Mutagenesis. 11: 573-579.


References


References


References


160.


miR398 and important for oxidative stress tolerance. Plant Cell. 18: 2051–2065.


by high throughput sequencing. BMC Plant Biol. 12: 146.


References


