CHAPTER 2

k*-PARANORMAL AND ALGEBRAICALLY k*-PARANORMAL OPERATORS

2.1 Introduction

The investigation of operators obeying Weyl’s theorem was initialized by Hermann Weyl who proved that for every Hermitian operator T on a complex Hilbert space H, $w(T) = \sigma(T) - \pi_{00}(T)$ [90].

We consider $B(H)$ as the Banach algebra of operators on a complex infinite dimensional Hilbert space H. Let $\sigma(T)$ denote the spectrum of $T \in B(H)$. In this chapter, necessary and sufficient conditions for an operator T in $B(H)$ to be k^*-paranormal operator are found out. Some properties of k^*-paranormal operators are discussed. It is also proved that the Riesz projection E_{λ} associated with $\lambda \in \text{iso}\sigma(T)$ satisfies $E_{\lambda} H = \ker(T - \lambda) = \ker(T - \lambda)^*$ and E_{λ} is self-adjoint. It is shown that (H) property and Weyl’s theorem hold for k^*-paranormal operators. Spectral mapping theorem and spectral mapping theorem for essential approximate point spectrum for algebraically k^*-paranormal operators are proved. Generalized Weyl’s theorem is proved for algebraically k^*-paranormal operators. Other Weyl type theorems are also discussed.

2.2 k^*-Paranormal operators

In this section we characterize k^*-paranormal operators and using matrix representation, it is proved that the restriction of k^*-paranormal operators to an invariant subspace is also k^*-paranormal operator.

Definition 2.2.1 [29] A bounded linear operator T on a complex Hilbert space H is said to be k^*-paranormal if $\|T^* x\|^k \leq \|T^k x\|$ for every unit vector $x \in H$, k being a positive integer.
This class of operators is an extension of hyponormal and \(* \)-paranormal operators and has many interesting properties. \(k \)-*-paranormal operators have Bishop’s property \((\beta)\) [24]. They are normaloids [29]. There is no inclusion between different \(k \)-*-paranormal operators for different values of \(k \).

Example 2.2.2 [29]

Let \(H \) be the direct sum of a denumerable number of copies of two dimensional Hilbert space \(R \times R \). Let \(A \) and \(B \) be two positive operators on \(R \times R \).

For any fixed positive integer \(n \), we define an operator \(T = T_{A,B,n} \) on \(H \) as follows:

\[
T(x_1, x_2, x_3, \ldots) = (0, Ax_1, Ax_2, \ldots, Ax_n, Bx_{n+1}, \ldots)
\]

Its adjoint \(T^* \) is given by

\[
T^*(x_1, x_2, x_3, \ldots) = (Ax_2, Ax_3, \ldots, Ax_n, Bx_{n+1}, \ldots).
\]

Let \(A \) and \(B \) are positive operators satisfying \(A^2 = C \) and \(B^4 = D \), where

\[
C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 1 & 2 \\ 2 & 8 \end{pmatrix},
\]

then \(T = T_{A,B,n} \) is of \(k \)-*-paranormal for \(k = 1 \).

Theorem 2.2.3 [29] For \(k \geq 3 \), there exists a \(k \)-*-paranormal operator which is not \(* \)-paranormal operator.

Theorem 2.2.4 [29] If \(T \) is a \(k \)-*-paranormal operator, then \(T \) is normaloid.

Theorem 2.2.5 An operator \(T \in B(H) \) is \(k \)-*-paranormal for a positive integer \(k \) if and only if for any \(\mu > 0 \),

\[
T^{*k}T^k - k \mu^{k-1}TT^* + (k-1)\mu^k \geq 0.
\]

Proof. Let \(\mu > 0 \) and \(x \in H \) with \(\|x\| = 1 \). Let \(T \in B(H) \) be \(k \)-*-paranormal. Using generalized arithmetic and geometric mean inequality, we get
\[
\frac{1}{k} \langle \mu^{k+1} | T^k |^2 x, x \rangle + \frac{k-1}{k} \langle \mu x, x \rangle = \langle \mu^{k+1} | T^k |^2 x, x \rangle \frac{1}{k} \langle \mu x, x \rangle \frac{k+1}{k} \\
= \mu^{\frac{k+1}{k}} \langle T^k T^k x, x \rangle \frac{1}{k} \langle \mu x, x \rangle \frac{k+1}{k} \\
= \langle T^k x, T^k x \rangle \frac{1}{k} \| x \|^2 \frac{2(k-1)}{k}
\]

Therefore,
\[
\frac{1}{k} \langle \mu^{k+1} | T^k |^2 x, x \rangle + \frac{k-1}{k} \langle \mu x, x \rangle = \| T^k x \|^2 \frac{2(k-1)}{k} \\
= \| T^k x \|^2 \quad [\because x \text{ is a unit vector}]
\geq \| T^* x \|^2 \\
= \langle TT^* x, x \rangle.
\]

Hence,
\[
\frac{\mu^{\frac{k+1}{k}}}{k} \langle | T^k |^2 x, x \rangle + \frac{k-1}{k} \mu \langle x, x \rangle - \langle TT^* x, x \rangle \geq 0.
\Rightarrow \mu^{\frac{k+1}{k}} \langle | T^k |^2 x, x \rangle + (k-1) \mu \langle x, x \rangle - \langle TT^* x, x \rangle \geq 0.
\Rightarrow \langle | T^k |^2 x, x \rangle + (k-1) \mu k^k TT^* x, x \rangle \geq 0.
\Rightarrow \langle T^k T^k x, x \rangle + (k-1) \mu k^k TT^* x, x \rangle \geq 0.
\Rightarrow T^k T^k - k \mu k TT^* + (k-1) \mu k \geq 0.
\]

Conversely assume that \(T^k T^k - k \mu k TT^* + (k-1) \mu k \geq 0 \) for any \(\mu > 0 \).

If \(\| T^* x \| = 0 \), then \(k^* - \)paranormality condition is trivially satisfied.

If \(x \in H \) with \(\| x \| = 1 \) and \(\| T^* x \| \neq 0 \) then,
\[
\left\langle \left(T^k T^k - k \mu k TT^* + (k-1) \mu k \right) x, x \right\rangle \geq 0
\Rightarrow \langle T^k x, T^k x \rangle - k \mu k^{k-1} \langle T^* x, T^* x \rangle + (k-1) \mu k \langle x, x \rangle \geq 0
\Rightarrow \| T^k x \|^2 - k \mu k^{k-1} \| T^* x \|^2 + (k-1) \mu k \| x \|^2 \geq 0.
\]
Taking $\mu = \left\| T^* x \right\|^2$,

\[\Rightarrow \left\| T^k x \right\|^2 - k \left\| T^{*} x \right\|^{2k} + (k - 1) \left\| T^{*} x \right\|^{2k} \geq 0 \]

\[\Rightarrow \left\| T^k x \right\|^2 - k \left\| T^{*} x \right\|^{2k} + k \left\| T^{*} x \right\|^{2k} - \left\| T^{*} x \right\|^{2k} \geq 0. \]

\[\Rightarrow \left\| T^k x \right\|^2 - \left\| T^{*} x \right\|^{2k} \geq 0 \]

i.e., $\left\| T^k x \right\| \geq \left\| T^{*} x \right\|^k$ for any unit vector $x \in H$.

Therefore T is k^*-paranormal.

Corollary 2.2.6 If an operator $T \in B(H)$ is k^*-paranormal for a positive integer k then αT is k^*-paranormal for $\alpha \in \mathbb{C}$.

Theorem 2.2.7 If $T \in B(H)$ is a k^*-paranormal operator for a positive integer k, T does not have a dense range and T has the following representation:

\[T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix} \] on $H = \overline{\text{ran}T} \oplus \ker T^*$, then T_1 is also k^*-paranormal operator on $\overline{\text{ran}T}$ and $T_3 = 0$. Moreover, $\sigma(T) = \sigma(T_1) \cup \{0\}$ where $\sigma(T)$ denotes the spectrum of T.

Proof. Let $T \in B(H)$ be k^*-paranormal operator.

Let P be the orthogonal projection onto $\overline{\text{ran}T}$.

Then $\begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP$.

Since T is k^*-paranormal, by theorem 2.2.5,

\[\left(T^{*k} T^k - k \mu^{k-1} TT^* + (k - 1) \mu^k \right) P \geq 0. \]

Hence,

\[\begin{pmatrix} T_1^{*k} T_1^k - k \mu^{k-1} (T_1 T_1^* + T_2 T_2^*) + (k - 1) \mu^k & 0 \\ 0 & 0 \end{pmatrix} \geq 0. \]

Therefore $T_1^{*k} T_1^k - k \mu^{k-1} (T_1 T_1^* + T_2 T_2^*) + (k - 1) \mu^k \geq 0.$
\[i.e, \quad T_1^{*k} T_1^k - k\mu^{k-1} T_1 T_1^* + (k-1)\mu^k \geq k\mu^{k-1} T_2^* T_2 \]
\[= k\mu^{k-1}\left| T_2^* \right|^2 \]
\[\geq 0. \]

Hence \(T_1 \) is also \(k^* \)-paranormal on \(\text{ran} \ T \).

Also for any \(x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \),
\[\langle T_3 x_2, x_2 \rangle = \langle (I - P)x, (I - P)x \rangle = \langle (I - P)x, T^* (I - P)x \rangle = 0. \]

Hence \(T_3 = 0 \).

By ([56], Corollary 7), \(\sigma(T_1) \cup \sigma(T_3) = \sigma(T) \cup \tau \), where \(\tau \) is the union of certain of the holes in \(\sigma(T) \) which happens to be a subset of \(\sigma(T_1) \cap \sigma(T_3) \) and \(\sigma(T_1) \cap \sigma(T_3) \) has no interior points.

Therefore \(\sigma(T) = \sigma(T_1) \cup \sigma(T_3) = \sigma(T_1) \cup \{0\} \).

Theorem 2.2.8 If \(T \in B(H) \) is \(k^* \)-paranormal operator for a positive integer \(k \) and \(M \) is an invariant subspace of \(T \), then the restriction \(T \mid_M \) is \(k^* \)-paranormal.

Proof. Let \(P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \) be the orthogonal projection of \(H \) onto an invariant subspace \(M \) of \(T \). Then \(\begin{pmatrix} T_1 & 0 \\ 0 & 0 \end{pmatrix} = TP = PTP \). Since \(T \) is \(k^* \)-paranormal operator, by theorem 2.2.5,
\[P \left(T_1^{*k} T_1^k - k\mu^{k-1} T T^* + (k-1)\mu^k \right) P \geq 0. \]

Hence \(T_1^{*k} T_1^k - k\mu^{k-1} (T_1 T_1^* + T_2 T_2^*) + (k-1)\mu^k \geq 0. \)

i.e, \(T_1^{*k} T_1^k - k\mu^{k-1} T_1 T_1^* + (k-1)\mu^k \geq k\mu^{k-1} T_2^* T_2 \)
\[= k\mu^{k-1}\left| T_2^* \right|^2 \]
\[\geq 0. \]

Hence \(T_1 \) (i.e) \(T \mid_M \) is also \(k^* \)-paranormal operator on \(M \).
Theorem 2.2.9 If $T \in B(H)$ is of k^*-paranormal operator for a positive integer k, $0 \neq \lambda \in \sigma_p(T)$ and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \text{ran}(T - \lambda)^*$, then

1. $T_2 = 0$ and
2. T_3 is k^*-paranormal.

Proof. Let $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \text{ran}(T - \lambda)^*$.

Without loss of generality assume that $\lambda = 1$. Then by theorem 2.2.5 for $\mu = 1$,

$$0 \leq T^{-k} T^k - k TT^* + (k-1)I = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix},$$

where $X = -T_2 T_2^*$, $Y = T_2 + T_2 T_3 + \cdots + T_2 T_3^{k-1} - k T_3^* T_3^*$ and $Z = Y^* Y + T_3^* T_3^k - k T_3 T_3^* -(k-1)$.

A matrix of the form $\begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \geq 0$ if and only if $X \geq 0$, $Z \geq 0$ and $Y = X^{1/2} W Z^{1/2}$, for some contraction W. Therefore $T_2 = 0$ and T_3 is k^*-paranormal.

Corollary 2.2.10 If $T \in B(H)$ is k^*-paranormal operator for a positive integer k and $(T - \lambda)x = 0$ for $\lambda \neq 0$ and $x \in H$, then $(T - \lambda)^* x = 0$.

Corollary 2.2.11 If $T \in B(H)$ is k^*-paranormal operator for a positive integer k, then T is of the form $T = \begin{pmatrix} \lambda & 0 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \text{ran}(T - \lambda)^*$, where T_3 is k^*-paranormal and $\ker(T_3 - \lambda) = \{0\}$.

2.3 Spectral properties

Let T be a bounded linear operator on a Hilbert space H and let $\text{iso}\sigma(T)$ be the set of isolated points of the spectrum $\sigma(T)$ of T. If $\lambda \in \text{iso}\sigma(T)$, the Riesz idempotent E_λ of T with respect to λ is defined by $E_\lambda = \frac{1}{2\pi i} \oint_{\mathcal{D}} (zI - T)^{-1} dz$.

20
where D is a closed disk with centre at λ and radius small enough such that $D \cap \sigma(T) = \{\lambda\}$.

It is well known that Riesz idempotent satisfies $E_\lambda^2 = E_\lambda$, $E_\lambda T = TE_\lambda$, $\sigma(T|_{E_\lambda H}) = \{\lambda\}$ and $\ker(T - \lambda) \subset E_\lambda H$. Stampfli [83] showed that if T satisfies the growth condition G_1, then E_λ is self adjoint, and $E_\lambda H = \ker(T - \lambda)$. Recently, Cho and Tanahashi [32] obtained an improvement of Stampfli’s result under a stronger assumption: If T is hyponormal then E_λ is self adjoint and $E_\lambda H = \ker(T - \lambda) = \ker(T - \lambda)^*$ -----(#).

Moreover they showed that (#) holds if T is either p-hyponormal or log-hyponormal. In the case $\lambda \neq 0$, the result (#) was further shown by Tanahashi and Uchiyama [85] to hold for p-quasihyponormal operators and by Uchiyama [87], [88] for class A and paranormal operators. In this section it is shown that the same equality (#) holds for k^*-paranormal operators also.

In this section, it is also shown that, among other results, if $T \in B(H)$ is k^*-paranormal operator, then T has (H) property and Weyl’s theorem holds for T and T^*.

Theorem 2.3.1 If $T \in B(H)$ is k^*-paranormal operator for a positive integer k and $\lambda \in C$ and assume that $\sigma(T) = \{\lambda\}$, then $T = \lambda$.

Proof. We consider two cases:

Case (i) : Let $\lambda = 0$. Since T is k^*-paranormal, by theorem 2.2.4, T is normaloid. Therefore $T = 0$.

Case(ii): Assume that $\lambda \neq 0$. Since $\sigma(T) = \lambda$, T is an invertible normaloid operator. Then $T_1 = \frac{1}{\lambda}T$ is an invertible normaloid operator with $\sigma(T_1) = \{1\}$. Hence T_1 is similar to an invertible isometry B (on an equivalent normed linear space) with
\[\sigma(B) = 1 \] (by theorem 2, [61]). \(T_1 \) and \(B \) being similar, 1 is an eigenvalue of \(T_1 = \frac{1}{\lambda} T \) (by theorem 5, [61]). Therefore by theorem 1.2.4, \(T_1 = I \). Hence \(T = \lambda \).

The following theorem characterises isolated points of the spectrum of \(T \) where \(T \) is \(k^* \)-paranormal operator, as the poles of the resolvent of \(T \).

Theorem 2.3.2 If \(T \in B(H) \) is \(k^* \)-paranormal operator for some positive integer \(k \), then \(T \) is polaroid.

Proof. Case (i) : Let \(\lambda = 0 \) and \(T_1 = T |_{E_{\lambda}H} \). By theorem 2.2.8, \(T_1 \) is \(k^* \)-paranormal. Hence \(T_1 \) is normaloid and \(E_{\lambda}H = \ker T \). Therefore 0 is simple pole of \(T \) and so \(T \) is polaroid.

Case (ii): Let \(\lambda(\neq 0) \in \text{iso} \sigma(T) \). Then using the spectral projection of \(T \) with respect to \(\lambda \), we can write \(T = T_1 \oplus T_2 \), where \(\sigma(T_1) = \{ \lambda \} \) and \(\sigma(T_2) = \sigma(T) - \{ \lambda \} \). For \(T_1 \) is \(k^* \)-paranormal operator and \(\sigma(T_1) = \{ \lambda \} \), by theorem 2.3.1 \(T_1 = \lambda \). Since \(\lambda \notin \sigma(T_2) \), \(T_2 - \lambda \) is invertible. Hence both \(T_1 - \lambda I \) and \(T_2 - \lambda I \) have finite ascent and descent and therefore \(T - \lambda I \) have finite ascent and descent. So \(\lambda \) is a pole of the resolvent of \(T \). Hence \(T \) is polaroid.

Evidently, the polaroid property implies reguloid property and reguloid property implies isoloid property. Hence the following corollaries are immediate consequences of the above theorem.

Corollary 2.3.3 If \(T \) is \(k^* \)-paranormal operator for some positive integer \(k \), then \(T \) is reguloid.

Corollary 2.3.4 \(k^* \)-paranormal operators are isoloids.

Theorem 2.3.5 Let \(T \) be \(k^* \)-paranormal for a positive integer \(k \) and \(\lambda \in \text{iso} \sigma(T) \). Then the Riesz idempotent operator \(E_{\lambda} \) with respect to \(\lambda \) satisfies \(E_{\lambda}H = \ker (T - \lambda) \). Hence \(\lambda \) is an eigenvalue of \(T \).
Proof. Let \(T \in B(H) \) be \(k^* \)-paranormal. Let \(\lambda \in \text{iso} \sigma(T) \) and \(E_\lambda = \frac{1}{2\pi i} \int_{\partial D} (\lambda I - T)^{-1} d\lambda \) be the associated Riesz idempotent where \(D \) is a closed disk centered at \(\lambda \) which contains no other points of \(\sigma(T) \). By definition \(\ker(T - \lambda) \subset E_\lambda(H) \) is clear. We shall show that \(E_\lambda H \subset \ker(T - \lambda) \).

By definition of Riesz idempotent \(\sigma(T \mid_{E_\lambda H}) = \{ \lambda \} \) and \(T \big|_{E_\lambda H} \) is \(k^* \)-paranormal. Therefore by theorem 2.3.1, \(T \big|_{E_\lambda H} = \lambda I \), where I is the identity operator on \(E_\lambda H \).

Hence \(E_\lambda H = \ker(T - \lambda) \). Hence \(\lambda \) is an eigen value of \(T \).

Theorem 2.3.6 \([24]\) \(k^* \)-paranormal operators have Bishop’s property (\(\beta \)) and hence have SVEP.

Theorem 2.3.7 Let \(T \in B(H) \) be a \(k^* \)-paranormal operator for a positive integer \(k \). Let \(\lambda \in \sigma(T) \) be an isolated point in \(\sigma(T) \). Then,

\[
\chi_T(\{\lambda\}) = \left\{ x \in H : \left\| (T - \lambda)^n x \right\|^\frac{1}{n} \to 0 \text{ as } n \to \infty \right\} = E_\lambda(H),
\]

where \(E_\lambda \) denotes the Riesz idempotent for \(\lambda \) and \(\chi_T(F) \) denotes the analytic subspace with respect to the closed subset \(F \subseteq C \).

Proof. Let \(T \in B(H) \) be \(k^* \)-paranormal. By theorem 2.3.6 \(T \) has SVEP. Then by [Corollary 2.4 \([65]\), \(\chi_T(\{\lambda\}) = \left\{ x \in H : \left\| (T - \lambda)^n x \right\|^\frac{1}{n} \to 0 \text{ as } n \to \infty \right\} \). The second half of the equality has been proved by F. Riesz and B. Sz. Nagy \([80]\).

Theorem 2.3.8 Let \(T \in B(H) \) be a \(k^* \)-paranormal operator for a positive integer \(k \) and \(\lambda \) be a nonzero isolated point in \(\sigma(T) \). Then the Riesz idempotent operator \(E_\lambda \) with respect to \(\lambda \) is self adjoint and satisfies \(E_\lambda H = \ker(T - \lambda) = \ker(T - \lambda)^* \).

Proof. Let \(T \in B(H) \) be a \(k^* \)-paranormal operator and let \(\lambda \in \text{iso} \sigma(T) \).

Without loss of generality let us assume that \(\lambda = 1 \).
Let \(T = \begin{pmatrix} 1 & T_2 \\ 0 & T_3 \end{pmatrix} \) on \(H = \ker(T - \lambda) \oplus \overline{\text{ran}(T - \lambda)^*} \).

By theorem 2.2.9, \(T_2 = 0 \) and \(T_3 \) is \(k^* \)- paranormal. Since \(1 \in \sigma(T) \), we see that either \(1 \notin \sigma(T_3) \) or \(1 \in \sigma(T_3) \).

If \(1 \in \sigma(T_3) \), then since \(T_3 \) is isoloid, \(1 \) is an eigenvalue of \(T_3 \). However by corollary 2.2.11 we have \(\ker(T_3 - 1) = \{0\} \). Therefore \(1 \notin \sigma(T_3) \) and hence \(T_3 - 1 \) is invertible on \(\overline{\text{ran}(T - \lambda)^*} \). Since \(T - 1 = 0 \oplus (T_3 - 1) \) and \(T_3 - 1 \) is invertible, we have \(\ker(T - 1) = \ker(T - 1)^* \). Also we have,

\[
E_\lambda = \frac{1}{2\pi i} \int_{\partial D} (zI - T)^{-1} \, dz
\]

\[
= \frac{1}{2\pi i} \int_{\partial D} \begin{pmatrix} (z - 1)^{-1} & 0 \\ 0 & (z - T_3)^{-1} \end{pmatrix} \, dz
\]

\[
= \begin{pmatrix} \frac{1}{2\pi i} \int_{\partial D} (z - 1)^{-1} \, dz & 0 \\ 0 & \frac{1}{2\pi i} \int_{\partial D} (z - T_3)^{-1} \, dz \end{pmatrix}
\]

\[
= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Therefore \(E_\lambda \) is the orthogonal projection onto \(\ker(T - 1) \) and it is selfadjoint.

Definition 2.3.9 [8] Let \(T \in L(X) \) be a bounded operator. \(T \) is said to have property (H), if \(H_0(\lambda I - T) = \ker(\lambda I - T) \), where \(H_0(T) = \left\{ x \in X : \lim_{n \to x} \left\| T^n x \right\| \frac{1}{n} = 0 \right\} \).

Theorem 2.3.10 \(k^* \)- paranormal operators have (H) property.

Proof. Let \(T \in B(H) \) be \(k^* \)- paranormal operator. If \(\lambda \in \sigma(T) \) with the spectral projection \(E_\lambda \), then by (Theorem 3.1, [63]), \(E_\lambda(H) = H_0(\lambda I - T) \).
Then by theorem 2.3.5, \(E_\lambda(H) = \ker(\lambda I - T) \).

Hence by Theorem 1.2.5, Theorem 1.2.6 and Theorem 1.2.7, we get the following results.

Theorem 2.3.11 If \(T \in B(H) \) is \(k^* \)-paranormal operator for some positive integer \(k \), then \(T \) has SVEP, \(p(\lambda I - T) \leq 1 \) for all \(\lambda \in C \) and \(T^* \) is reguloid.

Theorem 2.3.12 If \(T \in B(H) \) is \(k^* \)-paranormal operator for some positive integer \(k \), then Weyl’s theorem holds for \(T \) and \(T^* \). If in addition, \(T^* \) has SVEP then a-Weyl’s theorem holds for both \(T \) and \(T^* \).

Theorem 2.3.13 Let \(T \in B(H) \) be \(k^* \)-paranormal operator for some positive integer \(k \). If \(T^* \) has SVEP, then a-Weyl’s theorem holds for \(f(T) \) for every \(f \in H(\sigma(T)) \), where \(H(\sigma(T)) \) denotes the space of all analytic functions \(f : U \to C \) on an open neighbourhood \(U \) of \(\sigma(T) \) containing \(\sigma(T) \).

2.4 Algebraically \(k^* \)-paranormal operators

In this section, spectral mapping theorem and the essential approximate point spectral theorem for algebraically \(k^* \)-paranormal operators are proved. It is also shown that algebraically \(k^* \)-paranormal operators are polaroids.

Definition 2.4.1 An operator \(T \in B(H) \) is defined to be algebraically \(k^* \)-paranormal for a positive integer \(k \), if there exists a non-constant complex polynomial \(p(t) \) such that \(p(T) \) is of class \(k^* \)-paranormal.

If \(T \in B(H) \) is algebraically \(k^* \)-paranormal operator for some positive integer \(k \), then there exists a non-constant polynomial \(p(t) \) such that \(p(T) \) is \(k^* \)-paranormal. By the theorem 2.3.11, \(p(T) \) is of finite ascent. Hence \(p(T) \) has SVEP and hence \(T \) has SVEP (Theorem 3.3.6, [66]).
Theorem 2.4.2 If \(T \in B(H) \) is algebraically \(k^* \)-paranormal operator for some positive integer \(k \) and \(\sigma(T) = \{ \mu_0 \} \), then \(T - \mu_0 \) is nilpotent.

Proof. If \(T \in B(H) \) is algebraically \(k^* \)-paranormal, then there exists a non-constant polynomial \(p(t) \) such that \(p(T) \) is \(k^* \)-paranormal for some positive integer \(k \). Since for any \(T \in B(H) \), \(\sigma(p(T)) = p(\sigma(T)) \) and since \(\sigma(T) = \mu_0 \), we have \(\sigma(p(T)) = p(\mu_0) \). By theorem 2.3.1, \(p(T) = p(\mu_0) \).

Let \(p(z) - p(\mu_0) = a(z - \mu_0)^{k_0}(z - \mu_1)^{k_1} \cdots (z - \mu_s)^{k_s} \) where \(\mu_j \neq \mu_s \) for \(j \neq s \). Then \(0 = p(T) - p(\mu_0) = a(T - \mu_0)^{k_0}(T - \mu_1)^{k_1} \cdots (T - \mu_s)^{k_s} \). Since \(T - \mu_1, T - \mu_2, \ldots, T - \mu_s \) are invertible, \((T - \mu_0)^{k_0} = 0 \). Hence \(T - \mu_0 \) is nilpotent.

We know from [Theorem 3.3.9, [66]], that if an operator \(T \in B(H) \) satisfies SVEP then \(f(T) \) satisfies SVEP for every \(f \) which is analytic on an open neighbourhood of \(\sigma(T) \). Conversely, if \(f \in H(\sigma(T)) \), then SVEP for \(f(T) \) implies SVEP for \(T \).

Our next theorem provides spectral mapping theorem on the Weyl spectra of algebraically \(k^* \)-paranormal.

Theorem 2.4.3 [4] For every \(T \in B(H) \) and \(f \in H(\sigma(T)) \), \(f(T) \) has SVEP at \(\lambda \in C \) if and only if \(T \) has SVEP at every \(\mu \in \sigma(T) \) such that \(f(\mu) = \lambda \).

Theorem 2.4.4 If \(T \) is algebraically \(k^* \)-paranormal operator for some positive integer \(k \), then \(\omega(f(T)) = f(\omega(T)) \) for every \(f \in H(\sigma(T)) \).

Proof. Suppose that \(T \in B(H) \) is algebraically \(k^* \)-paranormal for some positive integer \(k \), then there exists a non-constant complex polynomial \(p(t) \) such that \(p(T) \) is \(k^* \)-paranormal. Then by theorem 2.3.6, \(p(T) \) has SVEP and hence \(T \) has SVEP. Then by [Proposition 38.5, [57]], \(\text{ind}(T - \lambda) \leq 0 \) for all \(\lambda \in C \).
We next show that \(w(f(T)) = f(w(T)) \) for all \(f \in H(\sigma(T)) \). Let \(f \in H(\sigma(T)) \).

Since it generally holds \(w(f(T)) \subseteq f(w(T)) \), it suffices to show that \(f(w(T)) \subseteq w(f(T)) \).

Suppose if \(\lambda \notin w(f(T)) \), then \(f(T) - \lambda I \) is Weyl and hence \(\text{ind}(f(T) - \lambda) = 0 \).

Let \(f(T) - \lambda = c(T - \lambda_1)(T - \lambda_2) \cdots (T - \lambda_n) g(T) \) where \(c, \lambda_1, \lambda_2, \cdots, \lambda_n \in C \) and \(g(T) \) is invertible. Since the operators \(T - \lambda_1, T - \lambda_2, \cdots T - \lambda_n \) commute, every \(T - \lambda_i \) is Fredholm for \(1 \leq i \leq n \).

Also \(\text{ind}(f(T) - \lambda) = 0 = \text{ind}(T - \lambda_1) + \text{ind}(T - \lambda_2) + \cdots + \text{ind}(T - \lambda_n) + \text{ind}(g(T)) \).

Since each of \(\text{ind}(T - \lambda_i) \leq 0 \), it follows that \(\text{ind}(T - \lambda_i) = 0 \) for all \(i = 1, 2, \cdots, n \).

Therefore \(T - \lambda_i \) is Weyl for each \(i = 1, 2, \cdots, n \). Hence \(\lambda_i \notin w(T) \) for \(i = 1, 2, \cdots, n \).

So \(\lambda \notin f(w(T)) \) and therefore \(f(w(T)) \subseteq w(f(T)) \). So \(w(f(T)) = f(w(T)) \).

Theorem 2.4.5 If \(T \) is algebraically \(k^* \)-paranormal operator for some positive integer \(k \), then \(\pi_{\infty}(T) \subseteq \sigma(T) - w(T) \) and \(\pi_{\infty}(p(T)) \subseteq \sigma(p(T)) - w(p(T)) \).

Proof. If \(\lambda \in \pi_{\infty}(T) \), then \(\lambda \in \text{iso}\sigma(T) \) and \(0 < \dim \ker(T - \lambda) < \infty \). The hypothesis \(\lambda \in \text{iso}\sigma(T) \) implies that ascent of \((T - \lambda) = \text{descent of} \ (T - \lambda) < \infty \).

Therefore \(\dim \ker(T - \lambda) = \dim \ker(T - \lambda)^* \), which implies that \(T - \lambda \in \Phi(H) \) and \(\text{ind}(T - \lambda) = 0 \). Hence \(\lambda \in \sigma(T) - w(T) \). Similarly we can prove the other inclusion.

Theorem 2.4.6 If \(T \) or \(T^* \) is algebraically \(k^* \)-paranormal operator for some positive integer \(k \), then \(\sigma_{ed}(f(T)) = f(\sigma_{ed}(T)) \) for every \(f \in H(\sigma(T)) \).

Proof. For \(T \in B(H) \), in [78], Rakocevic shows the inclusion \(\sigma_{ed}(f(T)) \subseteq f(\sigma_{ed}(T)) \) for every \(f \in H(\sigma(T)) \) with no restrictions on \(T \). Thus to prove the theorem, it is enough to prove that \(\sigma_{ed}(T) \subseteq \sigma_{ed}(f(T)) \).

Suppose that \(\lambda \notin \sigma_{ed}(f(T)) \). Then \(f(T) - \lambda \in \Phi^+(H) \), that is \(f(T) - \lambda \) is upper semi-Fredholm operator with index less than or equal to zero.
Also $f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2) \cdots (T - \alpha_n) g(T)$ where $g(T)$ is invertible and $c, \alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{C}$.

If T is algebraically k^*-paranormal for some positive integer k, then there exists a non-constant polynomial $p(t)$ such that $p(T)$ is k^*-paranormal. Then $p(T)$ has SVEP and hence T has SVEP. Therefore $\text{ind}(T - \alpha_i) \leq 0$ and hence $T - \alpha_i \in \Phi_+^-(H)$ for each $i = 1, 2, \cdots, n$. Therefore $\lambda = f(\alpha_i) \notin f(\sigma_{ea}(T))$. Hence $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$ for every $f \in H(\sigma(T))$.

If T^* is algebraically k^*-paranormal for some positive integer k, then there exists a non-constant polynomial $p(t)$ such that $p(T^*)$ is k^*-paranormal. Then $p(T^*)$ has SVEP and hence T^* has SVEP. Therefore $\text{ind}(T - \alpha_i) \geq 0$ for each $i = 1, 2, \cdots, n$.

Therefore

$$0 \leq \sum_{i=1}^{n} \text{ind}(T - \alpha_i) = \text{ind}(f(T) - \lambda) \leq 0.$$

So, $\text{ind}(T - \alpha_i) = 0$ for each $i = 1, 2, \cdots, n$. Hence $T - \alpha_i$ is Weyl for each $i = 1, 2, \cdots, n$. $(T - \alpha_i) \in \Phi_+^-(H)$ implies $\alpha_i \notin \sigma_{ea}(T)$. Then $\lambda = f(\alpha_i) \notin f(\sigma_{ea}(T))$. Therefore $f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T))$. Hence we have $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$.

Theorem 2.4.7 If T is algebraically k^*-paranormal operator for some positive integer k, then T is polaroid.

Proof. Let $\lambda \in \text{iso}\sigma(T)$ and let

$$E_\lambda := \frac{1}{2\pi i} \int_{\partial D} (\mu - T)^{-1} d\mu$$

be the associated Riesz idempotent, where D is a closed disk of center λ which contains no other points of $\sigma(T)$. We can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix},$$

where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$.

Since T is algebraically k^*-paranormal, $p(T)$ is k^*-paranormal for some non-constant polynomial $p(t)$. Since T_1 is algebraically k^*-paranormal with $\sigma(T_1) = \{\lambda\}$, by
Theorem 2.4.2, $T_i - \lambda I$ is nilpotent. Since $\lambda \not\in \sigma(T_2)$, $T_2 - \lambda I$ is invertible. Hence both $T_i - \lambda I$ and $T_2 - \lambda I$ and so $T - \lambda I$ have finite ascent and descent. Therefore λ is a pole of the resolvent of T. Hence T is polaroid.

Corollary 2.4.8 Suppose $T \in B(H)$ is algebraically $k*$-paranormal operator for some positive integer k, then T is reguloid.

Corollary 2.4.9 Suppose $T \in B(H)$ is algebraically $k*$-paranormal operator for some positive integer k, then T is isoloid.

2.5 **Generalized Weyl’s theorem**

In this section, it is shown that generalized Weyl’s theorem holds for algebraically $k*$-paranormal operators and other Weyl type theorems are discussed.

Theorem 2.5.1 Suppose $T \in B(H)$ is algebraically $k*$-paranormal operator for some positive integer k, then generalized Weyl’s theorem holds for T.

Proof. Let $T \in B(H)$ be algebraically $k*$-paranormal operator. Then there exists a non-constant polynomial $p(t)$ such that $p(T)$ is $k*$-paranormal. Then $p(T)$ has SVEP and consequently T has SVEP. Assume that $\lambda \in \sigma(T) - \sigma_{bw}(T)$ where $\sigma_{bw}(T)$ is B-Weyl spectrum of T. Then $T - \lambda$ is B-Weyl and not invertible.

We claim that $\lambda \in \partial \sigma(T)$. Assume the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood U of λ such that $\alpha(T - \mu) > 0$ for all μ in U. It follows from (Theorem 10, [47]), that T does not have SVEP. We have a contradiction. Therefore $\lambda \in \partial \sigma(T) - \sigma_{bw}(T)$. It follows that $\lambda \in E(T)$ where $E(T)$ denotes the set of all isolated eigenvalues of T with no restriction on multiplicity.

Conversely assume that $\lambda \in E(T)$, then λ is isolated in $\sigma(T)$. Using the Riesz idempotent E_{λ} with respect to λ, we can represent T as the direct sum

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix},$$

where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$.

29
Since T_1 is algebraically k^*-paranormal, by theorem 2.4.2, $T_1 - \lambda$ is nilpotent. As $\lambda \notin \sigma(T_2)$, $T_2 - \lambda$ is invertible. Therefore $T - \lambda I$ is Drazin invertible (Proposition 6, [81]) and (Corollary 2.2, [67]). By (Lemma 4.1, [21]) $T - \lambda I$ is a B-Fredholm operator of index zero. Hence $\lambda \in \sigma(T) - \sigma_{aw}(T)$. So $\sigma(T) - \sigma_{aw}(T) = E(T)$.

Corollary 2.5.2 Suppose $T \in B(H)$ is algebraically k^*-paranormal operator for some positive integer k, then Weyl’s theorem holds for T.

By (Theorem 2.16, [6]) we get the following result.

Corollary 2.5.3 If $T \in B(H)$ is algebraically k^*-paranormal for some positive integer k and T^* has SVEP, then a-Weyl’s theorem and property (w) hold for T.

Theorem 2.5.4 If $T \in B(H)$ is algebraically k^*-paranormal operator for some positive integer k, then Weyl’s theorem holds for $f(T)$, for every $f \in H(\sigma(T))$.

Proof. For every $f \in H(\sigma(T))$,

$$
\sigma(f(T)) - \pi_{00}(f(T)) = f(\sigma(T) - \pi_{00}(T)) \quad \text{by ([69], Lemma)}
$$

$$
= f(w(T)) \quad \text{by corollary 2.5.2}
$$

$$
= w(f(T)) \quad \text{by theorem 2.4.4}
$$

Hence Weyl’s theorem holds for $f(T)$ for every $f \in H(\sigma(T))$.

If T^* has SVEP, then by (Lemma 2.5, [2]) $\sigma_{ea}(T) = w(T)$ and $\sigma(T) = \sigma_a(T)$. Hence we get the following results.

Corollary 2.5.5 Suppose $T \in B(H)$ is algebraically k^*-paranormal for some positive integer k and if in addition T^* has SVEP, then a-Weyl’s theorem holds for $f(T)$ for every $f \in H(\sigma(T))$.

Corollary 2.5.6 If $T^* \in B(H)$ is algebraically k^*-paranormal operator for some positive integer k, then $w(f(T)) = f(w(T))$ for every $f \in H(\sigma(T))$.

30
Theorem 2.5.7 [2] Suppose that $T \in L(X)$ is polaroid. Then we have (i) if T^* has SVEP then property (b), (or equivalently property (w), Weyl’s theorem, a-Weyl’s theorem) holds for T (ii) if T has SVEP then property (b), (or equivalently property (w), Weyl’s theorem, a-Weyl’s theorem) holds for T^*.

By the above theorem, we get the following results.

Corollary 2.5.7 Suppose $T \in B(H)$ is algebraically k^*-paranormal for some positive integer k and T^* has SVEP, then property (b) holds for T.

Corollary 2.5.8 Suppose $T \in B(H)$ is algebraically k^*-paranormal for some positive integer k, then Weyl’s theorem, a-Weyl’s theorem, property (w) and property (b) hold for T^*.