List of Figures

Figure 1.1: The deep red colors in some stained glass windows created during the middle Ages were the result of surface plasmons, an electronic state of gold nanoparticles in the glass

Figure 1.2: Schematic representation of history of nanotechnology

Figure 1.3: Different structures having sizes in the range of meters to nanometers

Figure 1.4: Illustration demonstrating the effect of the increased surface area provided by nanostructured materials

Figure 1.5: Schematic representation of confinement effect on the energy level structure of a semiconductor material

Figure 1.6: Energy bands of metals, semiconductors and insulators

Figure 1.7: Band edge positions for various semiconductors

Figure 1.8: Schematic representation of basic applications of TiO$_2$

Figure 1.9: Different polymorphs of TiO$_2$

Figure 1.10: Cubic close pack Structure of Spinel oxide having AB$_2$O$_4$ formula

Figure 1.11: Reverse micelle and normal micelle structures.

Figure 1.12: a) Typical high-intensity ultrasonic rig and b) sonochemical synthesis of various nanostructured inorganic materials.

Figure 1.13: Schematic photoexcitation process in a solid followed by deexcitation events

Figure 1.14: Schematic illustration of charge transfer in a coupled semiconductor system

Figure 2.1: Schematic representation of Polyol Method for synthesis of ZnFe$_2$O$_4$ and TiO$_2$ nanoparticles
Figure 2.2: Sonochemical reactor

Figure 2.3: Schematic representation of Electrochemical Method

Figure 2.4: Schematic representation for synthesis of TiO$_2$ - ZnFe$_2$O$_4$ nanocomposite

Figure 2.5: Schematic diagram showing the conversion of MB into LMB with the addition of an electron.

Figure 2.6: Degradation products of Methylene Blue, where ‘a’ is the product detected by GC/MS and ‘b’ is the product detected by LC/MS

Figure 2.7: Schematic diagram of the visible photocatalytic setup

Figure 2.8: Electromagnetic spectrum, details of energy ranges

Figure 2.9: Photograph of X-Ray Diffractometer

Figure 2.10: Photograph explaining important components in X-Ray diffractometer

Figure 2.11: Optical path diagram of a two-beam absorption spectrometer

Figure 2.12: Photograph of FTIR Spectroscope

Figure 2.13: Finger print areas for different bonds

Figure 2.14: Schematic diagram of Scanning Electron Microscope

Figure 2.15: Photograph of Scanning Electron Microscope

Figure 2.16: A typical photograph of the TEM instrument along with a generalized cut away diagram of the internal structure of a transmission electron microscope

Figure 2.17: Electronic excitation of electrons between molecular orbitals

Figure 2.18: Photograph of Diffuse reflectance spectrocope

Figure 2.19: Different types of reflections

Figure 2.20: Photograph of Surface area analyzer
Figure 2.21: Photograph of Room temperature photoluminescence spectrophotometer

Figure 2.22: Schematic representation of a typical photoluminescence spectrometer

Figure 2.23: Diagram explaining working of a vibrating sample magnetometer (VSM)

Figure 2.24: Important parts of the XPS instrument

Figure 2.25: Schematic representation of principles of X-ray photoelectron spectroscopy

Figure 3.1: The structures of Ethylene Glycol (EG), Diethylene Glycol (DEG) and Polyethylene Glycol (PEG)

Figure 3.2: Powder X-ray diffraction (XRD) patterns of (a) zinc ferric glycolate precursor, (b) zinc ferric oxalate hydroxide hydrate precursor. ZnFe$_2$O$_4$ obtained by annealing the precursors at 800°C (c) sample ZF-EG, (d) sample ZF-DEG and (e) sample ZF-PEG

Figure 3.3: TG-DTA graph of A) EGylated precursor complex and B) PEGylated precursor complex

Figure 3.4: Spectra from the colorimetric tests on EG, DEG and PEG solvents heated at 150 °C for 1 h in air. Background from the colorimetric test was subtracted from all spectra

Figure 3.5: A general decomposition pathway of any glycol on heating

Figure 3.6: A plausible mechanistic interpretation of polyol process using DEG

Figure 3.7A: FTIR spectra of as synthesized precursor complexes by a) EG, b) DEG and c) PEG

Figure 3.7B: FTIR spectra of a) ZF-EG, b) ZF-DEG, and c) ZF-PEG
Figure 3.8: SEM image of A) EGylated precursor complex B) DEGylated precursor complex and C) PEGylated precursor complex

Figure 3.9: A-C) SEM images, D-F) TEM images, G-I) SAED pattern of ZnFe$_2$O$_4$ after annealing at 800°C, synthesized using EG, DEG and PEG respectively. J-K) HRTEM micrographs of ZnFe$_2$O$_4$ after annealing at 800°C, synthesized using DEG and PEG respectively

Figure 3.10: Magnetic hysteresis loops for A) EGylated, DEGylated and PEGylated precursor complexes, B) ZF-EG, ZF-DEG and ZF-PEG samples. A zoom of low field area is given in the inset

Figure 3.11: Zinc Ferrite synthesized at 50W, 100W and 150W power

Figure 3.12: Zinc Ferrite after annealing at 400°C for 2 hrs synthesized at 50W, 100W and 150W power

Figure 3.13: ZF synthesized at A) 50W, B) 100W, and C) 150W energy by sonochemically assisted coprecipitation method a) Pristine powder and b) After annealing at 400°C

Figure 3.14: TG-DTA graph of Pristine ZnFe$_2$O$_4$ prepared at 100W energy

Figure 3.15: ZF a) As prepared, b) After annealing at 400°C, synthesized at 100W power

Figure 3.16: ZF synthesized at a) 50W power b) 150W power and annealed at 400°C for 2 hr

Figure 3.17: Photocatalytic Degradation of ZnFe$_2$O$_4$ under Visible Light Irradiation Conditions

Figure 4.1: XRD patterns of a) Pristine TiO$_2$, b) TiO$_2$ after annealing at 300°C and c) 500°C, synthesized by Polyol method

Figure 4.2: UV-DRS spectra of TiO$_2$ nanoparticles a) Pristine sample, after annealing at b) 300°C and c) 500°C
Figure 4.3: TiO$_2$ nanoparticles prepared by polyol method using EG a) pristine sample, b) annealed at 300°C, and c) at 500°C

Figure 4.4: A) The XPS survey spectrum, B) Ti 2p XPS spectrum, C) C 1s XPS spectrum and D) O 1s XPS spectra of polyol mediated TiO$_2$ nanoparticles annealed at 300°C for 3h

Figure 4.5: SEM images of A) Pristine TiO$_2$, B) After annealing at 500°C and C) Elemental analysis after annealing at 500°C

Figure 4.6: Schematic illustrations of linear complexes that were formed between ethylene glycol and (A) tin, (B) titanium, (C) indium, and (D) lead cations

Figure 4.7: A - C) TEM images of polyol synthesized TiO$_2$ annealed at 300°C and D) SAED image of the same sample

Figure 4.8: Photocatalytic degradation of MB by TiO$_2$ nanoparticles synthesized by sonochemically assisted Polyol method

Figure 4.9: Simplified photocatalysis mechanism of carbon doped TiO$_2$ (anatase) upon irradiation with visible light

Figure 4.10: TiO$_2$ prepared by electrolysis using TBAB at a) 10mA, b) 20mA, c) 30mA, d) 40mA current densities

Figure 4.11: TiO$_2$ by electrochemical method using TBAB at 30mA current density a) As synthesized, b) after annealing at 300°C and 500°C c) for 3 hrs

Figure 4.12: DRS spectra of pristine TiO$_2$ nanoparticles by electrochemical method using TBAB at A) 10mA, B) 20mA, C) 30mA, D) 40mA Current density

Figure 4.13: DRS spectra of TiO$_2$ nanoparticles synthesized by electrochemical method using TBAB at A) 20mA, B) 30mA, C) 40mA Current density and annealed at 300°C for 3hr

Figure 4.14: TG-DTA graph of TiO$_2$ nanoparticles prepared by electrochemical synthesis using TBAB at A) 10mA, B) 20mA, C) 30mA and D) 40mA current density
Figure 4.15: a) 10mA, b) 20mA, c) 30mA, d) 40mA using TBAB as capping agent

Figure 4.16: Scanning electron micrograph of pristine TiO$_2$ synthesized at 40 mA using TBAB

Figure 4.17: A) TEM image, B) SAED pattern and C) HRTEM image of electrochemically synthesized TiO$_2$ at 10 mA using TBAB as capping agent after annealing at 500°C in for 3h in flowing air

Figure 4.18: Photocatalytic degradation of MB by TiO$_2$ nanoparticles synthesized by electrochemical method

Figure 5.1: Overlay of a) bare TiO$_2$, b-e) TiO$_2$-ZnFe$_2$O$_4$ (at 1, 3, 5, 10% ZF v/v) and f) ZnFe$_2$O$_4$ sample, all samples annealed at 300°C. Where ϕ = spinel ZnFe$_2$O$_4$ phase, A = Anatase phase and R = Rutile phase of TiO$_2$

Figure 5.2: Overlay of a) Pristine STZF-3 sample, after annealing b) at 300°C, c) 500°C and d) 700°C. Where A = Anatase phase and R = Rutile phase of TiO$_2$

Figure 5.3: Nitrogen sorption isotherm and corresponding pore diameter distribution obtained for sample STZF-3

Figure 5.4: SEM images and EDS graphs of A) PTS and B) STZF-3 composite after annealing at 300°C

Figure 5.5: A and B) TEM images, C) HRTEM micrograph and D) SAED pattern of 3% TiO$_2$-ZnFe$_2$O$_4$ composite after annealing at 500°C

Figure 5.6: FTIR spectra of pristine a) ZFO, b) PTS and c) STZF-3 as well as STZF-3 sample after annealing at d) 300°C, e) 500°C and f) 700°C for 3h in flowing air

Figure 5.7: A) The XPS survey scan, B) Ti 2p XPS spectrum, C) C 1s XPS spectrum, D) Zn 2p XPS spectrum, E) Fe 2p XPS spectrum, and F) O 1s XPS spectrum of TiO$_2$-ZnFe$_2$O$_4$ composite

Figure 5.8: UV-DRS spectra of PTS, STZF-1, STZF-3, STZF-5, STZF-10 and ZFO
Figure 5.9: UV-DRS spectra of a) pristine STZF-3 sample and after annealing at b) 300, c) 500 and d) 700°C

Figure 5.10: Room temperature photoluminescence spectra of a) PTS, b) STZF-1, c) STZF-3, d) STZF-5, e) STZF-10 and f) ZFO

Figure 5.11: Photocatalytic Degradation Control Experiment for Catalyst Loading

Figure 5.12: Visible Light MB Degradation Rates by PTS, ZFO, Degussa P-25, STZF-1, STZF-3, STZF-5, STZF-10 under visible light irradiation

Figure 5.13: Visible Light MB Degradation Rates by pristine STZF-3 and after annealing at 300, 500 and 700°C under visible light irradiation

Figure 5.14: Schematic representation for energy band matching and migration and separation of electron–hole pairs in the coupled TiO₂-ZnFe₂O₄ photocatalyst