Chapter 3

Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

In this chapter, we define interval valued equiprime, 3-prime and c-prime L-fuzzy ideals of nearrings using interval valued t-norms and interval valued t-conorms. We characterize interval valued prime L-fuzzy ideals in terms of their level subsets. We find interrelations among different interval valued prime L-fuzzy ideals. We relate interval valued fuzzy points with different interval valued prime fuzzy ideals.

3.1 Introduction

Prime ideal in rings is a natural extension of the concept of a prime number. The prime ideal notion is extended from commutative rings to nearrings in many ways. The frequently used generalized prime ideal notions in nearrings are equiprime, 3-prime and c-prime (refer Booth, Groenewald and Veldsman [26], Veldsman [110], Groenewald [55]). We define interval valued equiprime, 3-prime and c-prime L-fuzzy
ideals of nearrings. Then we characterize these prime ideal notions in terms of their level subsets.

We study interrelations among different interval valued L-fuzzy prime ideals. We prove that interval valued equiprime L-fuzzy ideal and interval valued 3-prime L-fuzzy ideal coincide in a distributive nearring. We characterize interval valued prime fuzzy ideals in terms of interval valued fuzzy points.

3.2 Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

Definition 3.2.1. An i-v L-fuzzy ideal \(\hat{\mu}\) of \(N\) is called an i-v **equiprime L-fuzzy ideal** if for all \(x, y, a \in N\),

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))).
\]
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

Definition 3.2.2. An i-v L-fuzzy ideal \(\hat{\mu} \) of \(N \) is called an *i-v 3-prime L-fuzzy ideal* if for all \(a, b \in N \),
\[
C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))).
\]

Definition 3.2.3. An i-v L-fuzzy ideal \(\hat{\mu} \) of \(N \) is called an *i-v c-prime L-fuzzy ideal* if for all \(a, b \in N \),
\[
C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))).
\]

Lemma 3.2.4. Let \(\hat{\mu} \) be an i-v equiprime L-fuzzy ideal of \(N \).

(i) For \(x, y, a \in N \) if \(C_I(\hat{\alpha}, \hat{\mu}(ax - ary)) \geq \hat{\beta} \) for all \(r \in N \) then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{\beta}) \) or \(C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Further, if associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent then \(a \in \hat{\mu}_\beta \) or \(x - y \in \hat{\mu}_\beta \).

(ii) For \(a, b \in N \), \(C_I(\hat{\alpha}, \hat{\mu}(a0)) \geq T_I(\hat{\beta}, \hat{\beta}) \) and \(C_I(\hat{\alpha}, \hat{\mu}(a - b0)) \geq T_I(C_I(\hat{\alpha}, \hat{\mu}(a)), T_I(\hat{\beta}, T_I(\hat{\beta}, \hat{\beta}))) \). Further, if associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent then \(a0 \in \hat{\mu}_\beta \) and \(C_I(\hat{\alpha}, \hat{\mu}(a - b0)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(a))) \).

(iii) If there exist \(a, b \in N \) such that \(aN = b \) then \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Further, if associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent then \(b \in \hat{\mu}_\beta \).

(iv) Let \(\hat{\mu} \) be an i-v equiprime L-fuzzy ideal of \(N \) with thresholds \(\hat{\alpha} = [m, m] \) and \(\hat{\beta} = [M, M] \). For \(x, y, a \in N \), if \(\hat{\mu}(ax - ary) = \hat{\mu}(0) \) for all \(r \in N \) then \(\hat{\mu}(a) \geq \hat{\mu}(0) \) or \(\hat{\mu}(x) = \hat{\mu}(y) \).

Proof. To prove (i), let \(x, y, a \in N \) be such that \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ax - ary)) \geq \hat{\beta} \) for all \(r \in N \). Then \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ax - ary)) \geq \hat{\beta} \). As \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \), we get
\[
C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ax - ary))) \geq T_I(\hat{\beta}, \hat{\beta}) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ax - ary))) \geq T_I(\hat{\beta}, \hat{\beta})
\]
(monotonicity of i-v t-norm).

Hence \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{\beta}) \) or \(C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, \hat{\beta}) \).

Now, suppose \(T_I \) is an idempotent i-v t-norm. Then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq \hat{\beta} \)
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

or \(C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq \hat{\beta} \). Hence \(a \in \mu_\beta \) or \(x - y \in \mu_\beta \).

To prove (ii) by the property of an i-v equiprime L-fuzzy ideal, for all \(x, y, p \in N \) we get

\[
C_I(\hat{\alpha}, \hat{\mu}(p)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(prx - pry)))
\] \hspace{1cm} (3.2.1)

\[
C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(prx - pry)))
\] \hspace{1cm} (3.2.2)

By taking \(p \) and \(x \) as \(a0 \) and \(y \) as 0 in Equation 3.2.1 and Equation 3.2.2, we get

\[
C_I(\hat{\alpha}, \hat{\mu}(a0)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(a0ra0 - a0r0))) = T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(0))) \geq T_I(\hat{\beta}, \hat{\beta}).
\]

Therefore \(C_I(\hat{\alpha}, \hat{\mu}(a0)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Suppose \(T_I \) is an idempotent i-v t-norm. Then

\[
C_I(\hat{\alpha}, \hat{\mu}(a0)) \geq \hat{\beta}. \text{ Hence } a0 \in \mu_\beta.
\]

Consider \(C_I(\hat{\alpha}, \hat{\mu}(a - b0)) = C_I(\hat{\alpha}, \hat{\mu}(a + (-b0))) \)

\[
\geq T_I(\hat{\beta}, T_I(C_I(\hat{\alpha}, \hat{\mu}(a)), C_I(\hat{\alpha}, \hat{\mu}(-b0)))) \geq T_I(\hat{\beta}, T_I(C_I(\hat{\alpha}, \hat{\mu}(a)), T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(b0))))).
\]

Suppose \(T_I \) is an idempotent i-v t-norm. Then \(C_I(\hat{\alpha}, \hat{\mu}(a - b0)) \)

\[
\geq T_I(C_I(\hat{\alpha}, \hat{\mu}(a)), T_I(\hat{\beta}, T_I(\hat{\beta}, \hat{\beta})))
\]

\[
= T_I(C_I(\hat{\alpha}, \hat{\mu}(a)), T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(a)))) = T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(a))).
\]

To prove (iii), suppose there exists \(a, b \in N \) such that \(aN = b \). Then \(a0 = b \).

By (ii), we get \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Suppose \(T_I \) is an idempotent i-v t-norm. Then

\[
C_I(\hat{\alpha}, \hat{\mu}(b)) \geq \hat{\beta}. \text{ Hence } b \in \mu_\beta.
\]

To prove (iv), let \(a, x, y \in N, \hat{\alpha} = [m, m] \) and \(\hat{\beta} = [M, M] \). Then

\[
\hat{\mu}(a), C_I(\hat{\alpha}, \hat{\mu}(x - y)) = \hat{\mu}(x - y) \text{ and } T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))
\]

\[
= \inf_{r \in N} \hat{\mu}(arx - ary). \text{ Let } \hat{\mu}(arx - ary) = \hat{\mu}(0) \text{ for all } r \in N \Rightarrow \inf_{r \in N} \hat{\mu}(arx - ary) = \hat{\mu}(0).
\]

As \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \), we get

\[
\hat{\mu}(a) \geq \hat{\mu}(0)
\] \hspace{1cm} (3.2.3)

or

106
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

\[\hat{\mu}(x - y) \geq \hat{\mu}(0). \] \hspace{1cm} (3.2.4)

Now, suppose \(\hat{\mu}(x - y) \geq \hat{\mu}(0) \). Then \(\hat{\mu}(x) = \hat{\mu}(x - y + y) \geq T(\hat{\mu}(x - y), \hat{\mu}(y)) \geq T(\hat{\mu}(0), \hat{\mu}(y)) \) (property of i-v L-fuzzy ideal and monotonicity of i-v t-norm). Therefore

\[\hat{\mu}(x) \geq T(\hat{\mu}(0), \hat{\mu}(y)) \] \hspace{1cm} (3.2.5)

We have \(C(\hat{\alpha}, \hat{\mu}(0)) \geq \hat{\beta} \). As \(\hat{\beta} = [M, M] \), we get \(\hat{\mu}(0) \geq [M, M] \Rightarrow \hat{\mu}(0) = [M, M] \).

From Equation (3.2.5), we get \(\hat{\mu}(x) \geq T([M, M], \hat{\mu}(y)) = \hat{\mu}(y) \). Hence \(\hat{\mu}(x) \geq \hat{\mu}(y) \).

Similarly we can prove \(\hat{\mu}(y) \geq \hat{\mu}(x) \). Therefore \(\hat{\mu}(x) = \hat{\mu}(y) \). \hfill \Box

Proposition 3.2.5. Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \). For \(a, b \in N \), if

- \(C_I(\hat{\alpha}, \hat{\mu}(anb)) \geq \hat{\beta} \) for all \(n \in N \) then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{\beta}) \) or
- \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Further if associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent then \(a \in \hat{\mu}_\beta \) or \(b \in \hat{\mu}_\beta \).

Proof. Let \(a, b \in N \) such that \(C_I(\hat{\alpha}, \hat{\mu}(anb)) \geq \hat{\beta} \) for all \(n \in N \).

Then \(C_I(\hat{\alpha}, \inf_{n \in N} \hat{\mu}(anb)) \geq \hat{\beta} \). As \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \), we get \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{n \in N} \hat{\mu}(anb))) \geq T_I(\hat{\beta}, \hat{\beta}) \) (by monotonicity of i-v t-norm) or \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{n \in N} \hat{\mu}(anb))) \geq T_I(\hat{\beta}, \hat{\beta}) \) (by monotonicity of i-v t-norm). Suppose \(T_I \) is an idempotent i-v t-norm. Then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq \hat{\beta} \) or \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq \hat{\beta} \). Hence \(a \in \hat{\mu}_\beta \) or \(b \in \hat{\mu}_\beta \). \hfill \Box

Proposition 3.2.6. Let \(\hat{\mu} \) be an i-v c-prime L-fuzzy ideal of \(N \). For \(a, b \in N \) if

- \(C_I(\hat{\alpha}, \hat{\mu}(ab)) \geq \hat{\beta} \) then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{\beta}) \) or \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{\beta}) \). Further if associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent then \(a \in \hat{\mu}_\beta \) or \(b \in \hat{\mu}_\beta \).

Proof. Let \(a, b \in N \) such that \(C_I(\hat{\alpha}, \hat{\mu}(ab)) \geq \hat{\beta} \). As \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \), we get \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))) \geq T_I(\hat{\beta}, \hat{\beta}) \) or \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))) \geq T_I(\hat{\beta}, \hat{\beta}) \) (by monotonicity of i-v t-norm). Suppose \(T_I \) is an idempotent i-v t-norm. Then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq \hat{\beta} \) or \(C_I(\hat{\alpha}, \hat{\mu}(b)) \geq \hat{\beta} \). Hence \(a \in \hat{\mu}_\beta \) or \(b \in \hat{\mu}_\beta \). \hfill \Box
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

Theorem 3.2.7. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of \(N \). If for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) the level set \(\hat{\mu}_{\hat{k}} \) is an equiprime ideal of \(N \) then \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \). Conversely, if \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \) with associated i-v t-norm \(T_I \) is idempotent then \(\hat{\mu}_{\hat{k}} \) is an equiprime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).

Proof. \((\Rightarrow)\) As \(\hat{\mu}_{\hat{k}} \) is an ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) by Theorem 2.2.8, we get \(\hat{\mu} \) is an i-v L-fuzzy ideal of \(N \). We will prove \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \). In a contrary way suppose there exist \(x, y, a \in N \) such that

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \quad \text{and} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))).
\]

Choose \(\hat{k} = T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))). \) Then

\[
\hat{k} \leq \hat{\beta} \land C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \leq \hat{\beta} \land C_I(\hat{\alpha}, \hat{\mu}(arx - ary))) \quad \text{for all} \ r \in N
\]

(by monotonicity of i-v t-norm)

\[
\Rightarrow \hat{k} \leq \hat{\beta} \quad \text{and} \quad \hat{k} \leq C_I(\hat{\alpha}, \hat{\mu}(arx - ary))) \quad \text{for all} \ r \in N \quad \text{(by property of lattice)}
\]

\[
\Rightarrow \hat{k} \leq \hat{\beta} \quad \text{and} \ arx - ary \in \hat{\mu}_{\hat{k}} \quad \text{for all} \ r \in N. \quad \text{Also} \ C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k} \quad \text{and} \ C_I(\hat{\alpha}, \hat{\mu}(x - y)) < \hat{k} \Rightarrow a \notin \hat{\mu}_{\hat{k}} \quad \text{and} \ \ x - y \notin \hat{\mu}_{\hat{k}} \quad \text{and} \ \hat{\alpha} < \hat{k}. \quad \text{Hence for} \ \hat{k} \in (\hat{\alpha}, \hat{\beta}], \ arx - ary \in \hat{\mu}_{\hat{k}} \quad \text{for all} \ r \in N \quad \text{however} \ a \notin \hat{\mu}_{\hat{k}} \quad \text{and} \ x - y \notin \hat{\mu}_{\hat{k}}. \quad \text{A contradiction to the fact that} \ \hat{\mu}_{\hat{k}} \quad \text{is an equiprime ideal of} \ N \quad \text{for all} \ \hat{k} \in (\hat{\alpha}, \hat{\beta}]\).

To prove the converse, suppose the associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent and \(a, x, y \in N \) such that \(arx - ary \in \hat{\mu}_{\hat{k}} \) for all \(r \in N \). Then \(C_I(\hat{\alpha}, \hat{\mu}(arx - ary))) \geq \hat{k} \) for all \(r \in N \Rightarrow C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \geq \hat{k}. \) As \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \), we get \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k} \)

(by monotonicity and idempotent property of i-v t-norm)

or

\[
C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))
\]

\[
\geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k} \quad \text{(by monotonicity and idempotent property of i-v t-norm)}
\]

Hence \(a \in \hat{\mu}_{\hat{k}} \) or \(x - y \in \hat{\mu}_{\hat{k}} \). Therefore \(\hat{\mu}_{\hat{k}} \) is an equiprime ideal of \(N \).

Theorem 3.2.8. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of \(N \). If for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) the level set
\(\hat{\mu}_k \) is a 3-prime ideal of \(N \) then \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \). Conversely, if \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm \(T_I \) is idempotent then \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).

Proof. (\(\Rightarrow \)) As \(\hat{\mu}_k \) is an ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) by Theorem 2.2.8, we get \(\hat{\mu} \) is an i-v L-fuzzy ideal of \(N \). We will prove \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \). In a contrary way suppose there exist \(a, b \in N \) such that

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))) \quad \text{and} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))).
\]

Choose \(\hat{k} = T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))) \) then \(\hat{k} \leq \hat{\beta} \land C_I(\hat{\alpha}, \hat{\mu}(arb)) \leq \hat{\beta} \land C_I(\hat{\alpha}, \hat{\mu}(arb)) \) for all \(r \in N \Rightarrow \hat{k} \leq \hat{\beta} \) and \(\hat{k} \leq C_I(\hat{\alpha}, \hat{\mu}(arb))) \) for all \(r \in N \Rightarrow \hat{k} \leq \hat{\beta} \) and \(arb \in \hat{\mu}_k \) for all \(r \in N \). Also \(C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k} \) and \(C_I(\hat{\alpha}, \hat{\mu}(b)) < \hat{k} \Rightarrow a \notin \hat{\mu}_k \) and \(b \notin \hat{\mu}_k \) and \(\hat{\alpha} < \hat{k} \). Hence for \(\hat{k} \in (\hat{\alpha}, \hat{\beta}], arb \in \hat{\mu}_k \) for all \(r \in N \) however \(a \notin \hat{\mu}_k \) and \(b \notin \hat{\mu}_k \).

A contradiction to the fact the \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).

To prove the converse, suppose the associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent and \(a, b \in N \) such that \(arb \in \hat{\mu}_k \) for all \(r \in N \). Then \(C_I(\hat{\alpha}, \hat{\mu}(arb))) \geq \hat{k} \) for all \(r \in N \)

\[
\Rightarrow C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))) \geq \hat{k}.
\]

As \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \), we get

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb)))
\]

\[
\Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{k}) = \hat{k} \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{k}) = \hat{k}.
\]

Hence \(a \in \hat{\mu}_k \) or \(b \in \hat{\mu}_k \). Therefore \(\hat{\mu}_k \) is a 3-prime ideal of \(N \).

Theorem 3.2.9. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of \(N \). If for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) the level set \(\hat{\mu}_k \) is a c-prime ideal of \(N \) then \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \). Conversely, if \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \) with associated i-v t-norm \(T_I \) is idempotent then \(\hat{\mu}_k \) is a c-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).

Proof. (\(\Rightarrow \)) As \(\hat{\mu}_k \) is an ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) by Theorem 2.2.8, we get \(\hat{\mu} \) is an i-v L-fuzzy ideal of \(N \). We will prove \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \). In a contrary way suppose there exist \(a, b \in N \) such that

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(arb))) \quad \text{and} \quad C_I(\hat{\alpha}, \hat{\mu}(b)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(arb))).
\]

Choose \(\hat{k} = T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(arb))) \) then
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

\[\hat{k} \leq \hat{\beta} \land C_I(\hat{\alpha}, \hat{\mu}(ab)) \Rightarrow \hat{k} \leq \hat{\beta} \text{ and } \hat{k} \leq C_I(\hat{\alpha}, \hat{\mu}(ab)) \Rightarrow \hat{k} \leq \hat{\beta} \text{ and } ab \in \hat{\mu}_k. \]

Also \(C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k} \) and \(C_I(\hat{\alpha}, \hat{\mu}(b)) < \hat{k} \Rightarrow a \notin \hat{\mu}_k \text{ and } b \notin \hat{\mu}_k \text{ and } \hat{\alpha} < \hat{k}. \)

Hence for \(\hat{k} \in (\hat{\alpha}, \hat{\beta}], ab \in \hat{\mu}_k \) however \(a \notin \hat{\mu}_k \text{ and } b \notin \hat{\mu}_k \).

A contradiction to the fact that \(\hat{\mu}_k \) is a c-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).

To prove the converse, suppose the associated i-v t-norm \(T_I \) of \(\hat{\mu} \) is idempotent and \(a, b \in N \) such that \(ab \in \hat{\mu}_k \). Then \(C_I(\hat{\alpha}, \hat{\mu}(ab)) \geq \hat{k} \).

As \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \), we get \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))) \) or

\[C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ab))) \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k} \text{ or } \]

\[C_I(\hat{\alpha}, \hat{\mu}(b)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k}. \]

Hence \(a \in \hat{\mu}_k \text{ or } b \in \hat{\mu}_k \).

Therefore \(\hat{\mu}_k \) is a c-prime ideal of \(N \).

Now we provide an example to study properties of i-v L-fuzzy ideal by changing t-norms and t-conorms.

Example 3.2.10. Let \(N = \{0, a, b, c\} \) be a set with binary operations \(+\) and \(\cdot\) defined as in Table 3.1.

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\cdot</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>c</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>c</td>
</tr>
</tbody>
</table>

Table 3.1: Nearring for Example 3.2.10

Then \((N, +, \cdot)\) is a nearring.

Let \(L = [0, 1] \). We define \(\hat{\mu} : N \to D(L) \) by \(\hat{\mu}(x) = \begin{cases} [0.9, 1] & \text{if } x = 0 \\ [0.5, 0.6] & \text{if } x = a \\ [0.2, 0.3] & \text{if } x \in \{b, c\}. \end{cases} \)

Then property of the i-v L-fuzzy ideal \(\hat{\mu} \) is given in Table 3.2 for different choice of t-norms, t-conorms and thresholds \(\hat{\alpha}, \hat{\beta} \).
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

<table>
<thead>
<tr>
<th>Thresholds, t-norm and t-conorm</th>
<th>Property of i-v L-fuzzy ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\alpha} = [0.2, 0.3], \hat{\beta} = [0.5, 0.6]$, $T_f(g,h) = \begin{cases} g & \text{if} \ g = 1 \ h & \text{if} \ h = 1 \ 0 & \text{otherwise}, \end{cases}$ $T_s(g,h) = \min(g,h)$, $C_f(g,h) = \max{g,h}$, $C_s(g,h) = \begin{cases} g & \text{if} \ h = 0 \ h & \text{if} \ g = 0 \ 1 & \text{otherwise}. \end{cases}$</td>
<td>$\hat{\mu}$ is equiprime, 3-prime and c-prime.</td>
</tr>
</tbody>
</table>

| $\hat{\alpha} = [0.2, 0.3], \hat{\beta} = [0.5, 0.6]$. Let $P = [0, 0.6], F = [0.6, 1]$. $T_f(g,h) = T_s(g,h)$ $= \begin{cases} g \land_L h & \text{if} \ g \in F \text{ or } h \in F \\ m & \text{if} \ g \in P \text{ and } h \in P, \end{cases}$ $C_f(g,h) = \min\{g + h, 1\}$, $C_s(g,h) = \begin{cases} g & \text{if} \ h = 0 \\ h & \text{if} \ g = 0 \\ 1 & \text{otherwise} \end{cases}$ | $\hat{\mu}$ is not equiprime, however $\hat{\mu}$ is 3-prime and c-prime. |

| $\hat{\alpha} = [0.5, 0.6], \hat{\beta} = [0.9, 0.1]$. Let $P = [0, 0.5], F = [0.5, 1]$. $T_f(g,h) = T_s(g,h)$ $= \begin{cases} g \land_L h & \text{if} \ g \in F \text{ or } h \in F \\ m & \text{if} \ g \in P \text{ and } h \in P, \end{cases}$ $C_f(g,h) = C_s(g,h)$ $= \begin{cases} M & \text{if} \ g \in F \text{ and } h \in F. \end{cases}$ | $\hat{\mu}$ is not equiprime, not 3-prime and not c-prime. |

Table 3.2: Table for Example 3.2.10

Now we provide an example for an i-v 3-prime L-fuzzy ideal.

Example 3.2.11. Let $N = \{0, a, b, c\}$ be a set with binary operations $+$ and \cdot defined as in Table 3.3.
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

<table>
<thead>
<tr>
<th>+</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>c</td>
<td>0</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>·</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
<td>0</td>
<td>c</td>
<td>b</td>
</tr>
</tbody>
</table>

Table 3.3: Nearring for Example 3.2.11

Then \((N, +, \cdot)\) is a nearring. Note that \((N, +)\) is Klein’s four group \(V_4\). The lattice \(L(V_4) = L(\text{Suzuki}[106])\) is shown in Figure 3.1, where subgroups of \(V_4\) are denoted by \(m = \{0\}, p = \{0, a\}, q = \{0, b\}, r = \{0, c\}, M = V_4\).

![Figure 3.1: Lattice \(L = \{m, p, q, r, M\}\) for Example 3.2.11](image)

Define \(\hat{\mu} : N \to D(L)\) by

\[
\hat{\mu}(x) = \begin{cases}
[p, M] & \text{if } x = 0 \\
[m, r] & \text{if } x = a \\
[m, m] & \text{if } x \in \{b, c\}.
\end{cases}
\]

Consider the t-norm, t-conorm and thresholds given in (i) of Table 3.4. It can be verified that \(\hat{\mu}\) is an i-v 3-prime L-fuzzy ideal of \(N\). Note that \(\hat{\mu}\) is not an i-v equiprime L-fuzzy ideal of \(N\), because

\[
C_I(\hat{\alpha}, \hat{\mu}(a)) = C_I([m, r], [m, r]) = [m, M] \not\prec [p, M] = T_I([p, M], C_I([m, r], [p, M]))
\]

\[
= T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ara - arc))) \quad \text{and} \quad C_I(\hat{\alpha}, \hat{\mu}(a - c)) = C_I([m, r], [m, m]) = [m, r] \not\prec [p, M] = T_I([p, M], C_I([m, r], [p, M])) = T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ara - arc))).
\]
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

Note that $\hat{\mu}$ is not an i-v c-prime L-fuzzy ideal of N, because $C_I(\hat{\alpha}, \hat{\mu}(c)) = C_I([m, r], [m, m]) = [m, r] \not\supset [p, M] = T_I([p, M], C_I([m, r], [p, M]))$

$= T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ca)))$ and $C_I(\hat{\alpha}, \hat{\mu}(a)) = C_I([m, r], [m, r]) = [m, M]$

$\not\supset [p, M] = T_I([p, M], C_I([m, r], [p, M])) = T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(ca)))$.

Table 3.4 shows change in t-norm, t-conorm, thresholds and corresponding change in the property of the i-v L-fuzzy ideal $\hat{\mu}$.

<table>
<thead>
<tr>
<th>Thresholds, t-norm and t-conorm</th>
<th>Property of i-v L-fuzzy ideal</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) $\hat{\alpha} = [m, r]$, $\hat{\beta} = [p, M]$, $T_f(g, h) = g \land_L h$, $C_f(g, h) = g \lor_L h$, $C_s(g, h) = \begin{cases} g & \text{if } h = m \ h & \text{if } g = m \ M & \text{otherwise.} \end{cases}$</td>
<td>$\hat{\mu}$ is 3-prime, however $\hat{\mu}$ is not c-prime and not equiprime.</td>
</tr>
<tr>
<td>(ii) $\hat{\alpha} = [m, m]$, $\hat{\beta} = [m, r]$, $T_f(g, h) = g \land_L h$, $C_f(g, h) = g \lor_L h$, $C_s(g, h) = C_s(g, h)$.</td>
<td>$\hat{\mu}$ is 3-prime and c-prime, however $\hat{\mu}$ is not equiprime.</td>
</tr>
</tbody>
</table>

Table 3.4: Table for Example 3.2.11

Now we provide an example to study properties of i-v L-fuzzy ideal by changing thresholds.
Example 3.2.12. Consider the nearring N in Example 3.2.10. Let L be the lattice shown in Figure 3.2.

Let $P = \{m, n, r, s\}, F = \{p, q, M\}$ or $P = \{m, n, p, q\}, F = \{r, s, M\}$.

We define

$$T_f(g,h) = T_s(g,h) = \begin{cases} g \land_L h & \text{if } g \in F \text{ or } h \in F \\ m & \text{if } g \in P \text{ and } h \in P, \end{cases}$$

$$C_f(g,h) = C_s(g,h) = \begin{cases} g \lor_L h & \text{if } g \in P \text{ or } h \in P \\ M & \text{if } g \in F \text{ and } h \in F. \end{cases}$$

Define $\hat{\mu} : N \to D(L)$ by

$$\hat{\mu}(x) = \begin{cases} [q, M] & \text{if } x = 0 \\ [n, s] & \text{if } x = a \\ [m, r] & \text{if } x \in \{b, c\}. \end{cases}$$

Then $\hat{\mu}$ is an i-v c-prime and 3-prime L-fuzzy ideal with thresholds $\hat{\alpha} = [m, r], \hat{\beta} = [n, s]$, however $\hat{\mu}$ is not an i-v equiprime L-fuzzy ideal.

Also $\hat{\mu}$ is an i-v L-fuzzy ideal with thresholds $\hat{\alpha} = [n, s], \hat{\beta} = [q, M]$, however $\hat{\mu}$ not i-v equiprime, 3-prime and c-prime L-fuzzy ideal.

Now we provide an example to show that level set of an i-v equiprime, 3-prime and c-prime L-fuzzy ideal need not be an ideal.

Example 3.2.13. Consider $R = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ be the ring of integers modulo 6. Let L be the lattice shown in the following Figure 3.3.
3.2. Interval Valued Equiprime, 3-Prime and C-Prime L-Fuzzy Ideals

For \(g, h \in L \) we define,

\[
T_f(g, h) = \begin{cases}
 g & \text{if } h = M \\
 h & \text{if } g = M \\
 m & \text{otherwise},
\end{cases}
\]

\[
T_s(g, h) = g \wedge_L h,
\]

\[
C_f(g, h) = g \vee_L h \text{ and } C_s(g, h) = \begin{cases}
 g & \text{if } h = m \\
 h & \text{if } g = m \\
 M & \text{otherwise.}
\end{cases}
\]

We define \(\hat{\mu} : R \to D(L) \) by

\[
\hat{\mu}(x) = \begin{cases}
 [h, M] & \text{if } x = \emptyset \\
 [q, g] & \text{if } x \in \{2, 3, 4\} \\
 [m, c] & \text{if } x \in \{1, 5\}.
\end{cases}
\]

Take \(\hat{\alpha} = [m, c] \) and \(\hat{\beta} = [q, g] \). Then \(\hat{\mu} \) is an i-v equiprime, 3-prime and c-prime L-fuzzy ideal of \(N \). Note that \([q, g] \in (\hat{\alpha}, \hat{\beta}) \) however \(\hat{\mu}_{[q, g]} = \{\emptyset, 2, 3, 4\} \) is not an ideal of \(N \).
Remark 3.2.14. By Theorem 1.2.7, there are 1440 i-v L-fuzzy ideals similar to i-v L-fuzzy ideal in Example 3.2.13, there are 6 i-v L-fuzzy ideals similar to i-v L-fuzzy ideal in Example 3.2.11, and 2 i-v L-fuzzy ideals similar to i-v L-fuzzy ideal in Example 3.2.12.

3.3 Interrelations between Interval Valued Prime L-fuzzy Ideals

Proposition 3.3.1. Let N be a distributive nearring. Then $\hat{\mu}$ is an i-v equiprime L-fuzzy ideal of N if and only if $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of N.

Proof. (\Rightarrow) Let $a, b \in N$ and $\hat{\mu}$ be an i-v equiprime L-fuzzy ideal of N. Then

$C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ar(b - 0))))$ or

$C_I(\hat{\alpha}, \hat{\mu}(b - 0)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ar(b - 0))))$.

Hence $C_I(\hat{\alpha}, \hat{\mu}(ar(b))) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb)))$ or $C_I(\hat{\alpha}, \hat{\mu}(arb)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arb)))$.

Therefore $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of N.

To prove the converse, let $a, x, y \in N$ and $\hat{\mu}$ be an i-v 3-prime L-fuzzy ideal of N. Then

$C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ar(x - y))))$ or

$C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(ar(x - y)))) = T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$.

Hence $C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$ or

$C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$.

Therefore $\hat{\mu}$ is an i-v equiprime L-fuzzy ideal of N. \qed

Proposition 3.3.2. If $\hat{\mu}$ is an i-v equiprime L-fuzzy ideal of N with associated i-v t-norm idempotent then $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of N. Converse holds if N is a commutative ring.
3.3. Interrelations between Interval Valued Prime L-fuzzy Ideals

Proof. Let \(\hat{\mu} \) be an i-v equiprime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then by Theorem 3.2.7, we get \(\hat{\mu}_k \) is an equiprime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Hence \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).
By Theorem 3.2.8, \(\hat{\mu} \) is an i-v 3-prime ideal of \(N \).

To prove converse, let \(N \) be a commutative ring. Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu}_k \) is an equiprime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \).
Therefore \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(N \) (by Theorem 3.2.9). \(\square \)

Proposition 3.3.3. If \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent then \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \). Converse holds if \(N \) is a commutative ring.

Proof. Let \(\hat{\mu} \) be an i-v c-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then \(\hat{\mu}_k \) is a c-prime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \) \(\Rightarrow \) \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \) (by Theorem 3.2.8).
To prove converse, let \(N \) be a commutative ring. Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \). Hence \(\hat{\mu}_k \) is a c-prime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \).
Therefore \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \) (by Theorem 3.2.9). \(\square \)

Proposition 3.3.4. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of \(N \). For all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) if \(\hat{\mu}_k \) is an equiprime ideal of \(N \) then \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \).

Proof. Let \(\hat{\mu}_k \) be an equiprime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \).
Then \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(k \in (\hat{\alpha}, \hat{\beta}] \).
Therefore \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \) (by Theorem 3.2.8). \(\square \)

Proposition 3.3.5. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of commutative ring \(R \). For all
3.3. Interrelations between Interval Valued Prime L-fuzzy Ideals

\[\hat{k} \in (\hat{\alpha}, \hat{\beta}] \text{ if } \hat{\mu}_k \text{ is an equiprime ideal of } R \text{ then } \hat{\mu} \text{ is an i-v c-prime L-fuzzy ideal of } R. \]

Proof. Let \(\hat{\mu}_k \) be an equiprime ideal of commutative ring \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu}_k \) is a c-prime ideal of \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Therefore \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(R \). \(\square \)

Proposition 3.3.6. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of commutative ring \(R \). For all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) if \(\hat{\mu}_k \) is an 3-prime ideal of \(R \) then \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(R \).

Proof. Let \(\hat{\mu}_k \) be an 3-prime ideal of commutative ring \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu}_k \) is a c-prime ideal of \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Therefore \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(R \). \(\square \)

Proposition 3.3.7. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of commutative ring \(R \). For all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) if \(\hat{\mu}_k \) is an 3-prime ideal of \(R \) then \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(R \).

Proof. Let \(\hat{\mu}_k \) be an 3-prime ideal of commutative ring \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu}_k \) is an equiprime ideal of \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Therefore \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(R \). \(\square \)

Proposition 3.3.8. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of commutative ring \(R \). For all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) if \(\hat{\mu}_k \) is an c-prime ideal of \(R \) then \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(R \).

Proof. Let \(\hat{\mu}_k \) be an c-prime ideal of commutative ring \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(\hat{\mu}_k \) is an equiprime ideal of \(R \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Therefore \(\hat{\mu} \) is an i-v equiprime L-fuzzy ideal of \(R \). \(\square \)

Proposition 3.3.9. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of commutative ring \(R \). For all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) if \(\hat{\mu}_k \) is an c-prime ideal of \(R \) then \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(R \).
3.3. Interrelations between Interval Valued Prime L-fuzzy Ideals

Proof. Let $\hat{\mu}_k$ be an c-prime ideal of commutative ring R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Then $\hat{\mu}_k$ is a 3-prime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Therefore $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of R. \square

Proposition 3.3.10. Let R be a commutative ring and $\hat{\mu}$ be an i-v L-fuzzy ideal of N with associated i-v t-norm idempotent. Then following statements are equivalent.

1. $\hat{\mu}$ is an i-v equiprime L-fuzzy ideal of R.
2. $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of R.
3. $\hat{\mu}$ is an i-v c-prime L-fuzzy ideal of R.

Proof. (1) \Rightarrow (2). Let $\hat{\mu}$ be an i-v equiprime L-fuzzy ideal of R with associated i-v t-norm idempotent. Then by Theorem 3.2.7, we get $\hat{\mu}_k$ is an equiprime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Then $\hat{\mu}_k$ is a 3-prime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. By Theorem 3.2.8, $\hat{\mu}$ is an i-v 3-prime L-fuzzy ideal of R.

(2) \Rightarrow (3). Let $\hat{\mu}$ be an i-v 3-prime L-fuzzy ideal of R with associated i-v t-norm idempotent. Then by Theorem 3.2.8, we get $\hat{\mu}_k$ is a 3-prime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Then $\hat{\mu}_k$ is a c-prime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. By Theorem 3.2.9, $\hat{\mu}$ is an i-v c-prime L-fuzzy ideal of R.

(3) \Rightarrow (1). Let $\hat{\mu}$ be an i-v c-prime L-fuzzy ideal of R with associated i-v t-norm idempotent. Then by Theorem 3.2.9, we get $\hat{\mu}_k$ is a c-prime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Then $\hat{\mu}_k$ is an equiprime ideal of R for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. By Theorem 3.2.7, $\hat{\mu}$ is an i-v equiprime L-fuzzy ideal of R. \square

Proposition 3.3.11. Let $\hat{\mu}$ be an i-v equiprime L-fuzzy ideal of N with associated i-v t-norm idempotent. If $\hat{\mu}$ has IFP then $\hat{\mu}$ is an i-v c-prime L-fuzzy ideal of N.

Proof. Let $\hat{\mu}$ be an i-v equiprime L-fuzzy ideal of N with associated i-v t-norm idempotent. Then by Theorem 3.2.7, we get $\hat{\mu}_k$ is an equiprime ideal of N for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. By Lemma 2.17 in Kedukodi, Kuncham and Bhavanri [75], we get $\hat{\mu}_k$ is a c-prime ideal of N for all $\hat{k} \in (\hat{\alpha}, \hat{\beta}]$. Therefore $\hat{\mu}$ is an i-v c-prime L-fuzzy ideal of N. \square
3.3. Interrelations between Interval Valued Prime L-fuzzy Ideals

Proposition 3.3.12. Let \(\hat{\mu} \) be an i-v L-fuzzy subset of \(N \). If for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) the level set \(\hat{\mu}_k \) is an equiprime ideal of \(N \) with IFP. Then \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \).

Proof. Let \(a, b \in N \) and \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) such that \(ab \in \hat{\mu}_k \). By IFP, we get \(anb \in \hat{\mu}_k \) for all \(n \in N \Rightarrow anb - an0 \in \hat{\mu}_k \) for all \(n \in N \Rightarrow a \in \hat{\mu}_k \) or \(b \in \hat{\mu}_k \). Hence \(\hat{\mu}_k \) is a c-prime ideal of \(N \). By Theorem 3.2.9, \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \). \(\square \)

Proposition 3.3.13. Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. If \(\hat{\mu} \) has IFP then \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \).

Proof. Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. By Theorem 3.2.8, we get \(\hat{\mu}_k \) is a 3-prime ideal of \(N \) for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Let \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \) and \(a, b \in N \) such that \(ab \in \hat{\mu}_k \). By Lemma 2.2.23 \(\hat{\mu}_k \) has IFP for all \(\hat{k} \in (\hat{\alpha}, \hat{\beta}] \). Then \(anb \in \hat{\mu}_k \) for all \(n \in N \Rightarrow a \in \hat{\mu}_k \) or \(b \in \hat{\mu}_k \). Hence \(\hat{\mu}_k \) is a c-prime ideal of \(N \). Therefore \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \). (By Theorem 3.2.9). \(\square \)

Proposition 3.3.14. Let \(\hat{\mu} \) be an i-v L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. If \(\hat{\mu} \) has IFP then following are equivalent.

1. \(\hat{\mu} \) is an i-v c-prime L-fuzzy ideal of \(N \).
2. \(\hat{\mu} \) is an i-v 3-prime L-fuzzy ideal of \(N \).

Proof. (1) \(\Rightarrow \) (2) Let \(\hat{\mu} \) be an i-v c-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then by Proposition 3.3.3, we get \(\hat{\mu} \) is i-v 3-prime L-fuzzy ideal of \(N \).

(2) \(\Rightarrow \) (1) Let \(\hat{\mu} \) be an i-v 3-prime L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. and \(\hat{\mu} \) has IFP. Then by Proposition 3.3.13, we get \(\hat{\mu} \) is an i-v c-prime ideal of \(N \). \(\square \)

Corollary 3.3.15. Let \(N \) be a distributive nearring and \(\hat{\mu} \) be an i-v L-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. If \(\hat{\mu} \) has IFP then following statements are equivalent.
3.4. Interval Valued Prime Fuzzy Ideals

1. \(\hat{\mu} \) is an i-v equiprime \(L \)-fuzzy ideal of \(N \).
2. \(\hat{\mu} \) is an i-v 3-prime \(L \)-fuzzy ideal of \(N \).
3. \(\hat{\mu} \) is an i-v c-prime \(L \)-fuzzy ideal of \(N \).

Proof. (1)\(\Rightarrow \) (2) Let \(\hat{\mu} \) be an i-v equiprime \(L \)-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then by Proposition 3.3.2, we get \(\hat{\mu} \) is an i-v 3-prime \(L \)-fuzzy ideal of \(N \).

(2)\(\Rightarrow \) (3) Let \(\hat{\mu} \) be an i-v 3-prime \(L \)-fuzzy ideal of \(N \) with associated i-v t-norm idempotent and \(\hat{\mu} \) has IFP. Then by Proposition 3.3.13, we get \(\hat{\mu} \) is an i-v c-prime \(L \)-fuzzy ideal of \(N \).

(3)\(\Rightarrow \) (2) Let \(\hat{\mu} \) be an i-v c-prime \(L \)-fuzzy ideal of \(N \) with associated i-v t-norm idempotent. Then by Proposition 3.3.3, we get \(\hat{\mu} \) is an i-v 3-prime \(L \)-fuzzy ideal of \(N \).

(2)\(\Rightarrow \) (1) Let \(\hat{\mu} \) be an i-v 3-prime \(L \)-fuzzy ideal of \(N \) with associated i-v t-norm idempotent and \(\hat{\mu} \) has IFP. Then by Proposition 3.3.1 we get \(\hat{\mu} \) is an i-v equiprime \(L \)-fuzzy ideal of \(N \).

\[\square \]

3.4 Interval Valued Prime Fuzzy Ideals

Theorem 3.4.1. Let \(\hat{\mu} \) be an i-v fuzzy ideal of \(N \).

1. If \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \) with associated i-v idempotent t-norm \(T_I \) then for every \(\hat{k} \in ([0,0],[1,1]) \), \(\hat{\mu}_{\hat{k} \vee q} \) is an equiprime ideal of \(N \).
2. If for every \(\hat{k} \in ([0,0],[1,1]) \), \(\hat{\mu}_{\hat{k} \vee q} \) is an equiprime ideal of \(N \) then \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \).

Proof. To prove (1), let \(\hat{\mu} \) be an i-v equiprime fuzzy ideal of \(N \) with associated i-v idempotent t-norm \(T_I \). Then by Theorem 2.4.3(1), we get for every \(\hat{k} \in ([0,0],[1,1]) \), \(\hat{\mu}_{\hat{k} \vee q} \) is an ideal of \(N \). Let \(\hat{k} \in ([0,0],[1,1]) \). We will prove \(\hat{\mu}_{\hat{k} \vee q} \) is an equiprime ideal of \(N \). Let \(\hat{k} \in ([0,0],[1,1]) \). We will prove \(\hat{\mu}_{\hat{k} \vee q} \) is an equiprime ideal of \(N \). Let \(a, x, y \in N \) such that \(arx - ary \in \hat{\mu}_{\hat{k} \vee q} \) for all \(r \in N \Rightarrow C_I(\hat{a}, \hat{\mu}(arx - ary)) \geq \hat{k} \)
or \(C_I(\hat{\alpha}, \hat{\mu}(arx - ary)) + \hat{k} > 2\hat{\beta} \) for all \(r \in N \). Then \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \geq \hat{k} \) or \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) + \hat{k} > 2\hat{\beta} \). As \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \),

\[
\begin{align*}
C_I(\hat{\alpha}, \hat{\mu}(a)) & \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) \\
& \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))).
\end{align*}
\]

We get following cases.

Case (i), suppose \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \geq \hat{k} \). Then \(C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, \hat{k}) \)

\[
\begin{align*}
T_I(\hat{k}, \hat{k}) = \hat{k} \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq \hat{k} & \Rightarrow a \in \hat{\mu}_{k\forall q} \quad \text{or} \quad x - y \in \hat{\mu}_{k\forall q}. \quad \text{Therefore} \\
\hat{\mu}_{k\forall q} & \text{is an equiprime ideal of} \ N. \quad \text{Proof is similar for} \ \hat{k} = \hat{\beta}. \quad \text{Suppose} \ \hat{k} > \hat{\beta}. \quad \text{Then} \\
T_I(\hat{\beta}, \hat{k}) & \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta}. \quad \text{Hence} \ C_I(\hat{\alpha}, \hat{\mu}(a)) \geq \hat{\beta} \quad \text{and} \quad \hat{k} > \hat{\beta} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) + \hat{k} \\
& \geq \hat{\beta} + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) + \hat{k} > 2\hat{\beta} \Rightarrow a \in \hat{\mu}_{k\forall q}. \quad \text{Similarly we can prove} \\
(x - y) & \in \hat{\mu}_{k\forall q}. \quad \text{Therefore} \ \hat{\mu}_{k\forall q} \text{is an equiprime ideal of} \ N.
\end{align*}
\]

Case (ii), suppose \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) + \hat{k} > 2\hat{\beta} \). Then \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \)

\[
\begin{align*}
& > 2\hat{\beta} - \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) \geq T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})). \quad \text{Suppose} \\
\hat{\beta} & \geq \hat{k}. \quad \text{Then} \quad T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k}. \quad \text{Hence} \ C_I(\hat{\alpha}, \hat{\mu}(a)) \geq \hat{k} \quad \text{or} \\
C_I(\hat{\alpha}, \hat{\mu}(x - y)) & \geq \hat{k} \quad \Rightarrow a \in \hat{\mu}_{k\forall q} \quad \text{or} \quad (x - y) \in \hat{\mu}_{k\forall q}. \quad \text{Proof is similar for} \ \hat{k} = \hat{\beta}. \quad \text{Suppose} \ \hat{k} > \hat{\beta}. \quad \text{Then} \\
T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) & \geq T_I(2\hat{\beta} - \hat{k}, 2\hat{\beta} - \hat{k}) = 2\hat{\beta} - \hat{k}. \quad \text{Hence} \\
C_I(\hat{\alpha}, \hat{\mu}(a)) & \geq 2\hat{\beta} - \hat{k} \quad \text{and} \quad \hat{k} > (2\hat{\beta} - \hat{k}) \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(a)) + \hat{k} > 2\hat{\beta} \Rightarrow a \in \hat{\mu}_{k\forall q}. \quad \text{Similarly} we can prove \ (x - y) \in \hat{\mu}_{k\forall q}. \quad \text{Therefore} \ \hat{\mu}_{k\forall q} \text{is an equiprime ideal of} \ N.
\end{align*}
\]

To prove (2), let for every \(\hat{k} \in ([0, 0], [1, 1]) \), \(\hat{\mu}_{k\forall q} \) is an equiprime ideal of \(N \). Then by Theorem 2.4.3(2), \(\hat{\mu} \) is an i-v fuzzy ideal of \(N \). We will prove \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \). Suppose there exists \(a, x, y \in N \) such that

\[
\begin{align*}
C_I(\hat{\alpha}, \hat{\mu}(a)) & < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \quad \text{and} \\
C_I(\hat{\alpha}, \hat{\mu}(x - y)) & < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))). \quad \text{Choose} \ \hat{k} \in D([0, 1]) \text{ such that} \\
C_I(\hat{\alpha}, \hat{\mu}(a)) & < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \quad \text{and} \\
C_I(\hat{\alpha}, \hat{\mu}(x - y)) & < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))).
\end{align*}
\]

Then \(C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k}, C_I(\hat{\alpha}, \hat{\mu}(x - y)) < \hat{k} \quad \text{and} \quad \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \)

\[
\begin{align*}
& \leq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(arx - ary))) \leq \hat{\beta} \quad \text{and} \\
& C_I(\hat{\alpha}, \hat{\mu}(arx - ary)) \quad \text{for all} \ r \in N. \quad \text{Then for} \ \hat{k} \in ([0, 0], [1, 1]) \text{, we get} \\
C_I(\hat{\alpha}, \hat{\mu}(arx - ary)) & \geq \hat{k} \quad \text{for all} \ r \in N \quad \text{and} \ C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k}
\end{align*}
\]
and \(C_I(\hat{\alpha}, \hat{\mu}(x - y)) < \hat{k} \). Hence for \(\hat{k} \in ([0, 0], [1, 1]) \), we get \(arx - ary \in \hat{\mu}_{kqv} \) for all \(r \in N \) however \(a \notin \hat{\mu}_{kqv} \) and \((x - y) \notin \hat{\mu}_{kqv} \). We get a contradiction to the fact that \(\hat{\mu}_{kqv} \) is an equiprime ideal of \(N \) for all \(\hat{k} \in ([0, 0], [1, 1]) \). Therefore \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \).

\[\square \]

Theorem 3.4.2. Let \(\hat{\mu} \) be an i-v fuzzy ideal of \(N \).

1. If \(\hat{\mu} \) is an i-v 3-prime fuzzy ideal of \(N \) with associated i-v idempotent t-norm \(T_I \) then for every \(\hat{k} \in ([0, 0], [1, 1]) \), \(\hat{\mu}_{kqv} \) is a 3-prime ideal of \(N \).

2. If for every \(\hat{k} \in ([0, 0], [1, 1]) \), \(\hat{\mu}_{kqv} \) is a 3-prime ideal of \(N \) then \(\hat{\mu} \) is an i-v 3-prime fuzzy ideal of \(N \).

Proof. To prove (1), let \(\hat{\mu} \) be an i-v 3-prime fuzzy ideal of \(N \) with associated i-v idempotent t-norm \(T_I \). Then by Theorem 2.4.3(1), we get for every \(\hat{k} \in ([0, 0], [1, 1]) \), \(\hat{\mu}_{kqv} \) is an ideal of \(N \). Let \(\hat{k} \in ([0, 0], [1, 1]) \). We will prove \(\hat{\mu}_{kqv} \) is a 3-prime ideal of \(N \). Let \(x, y \in N \) such that \(xry \in \hat{\mu}_{kqv} \) for all \(r \in N \) \(\Rightarrow C_I(\hat{\alpha}, \hat{\mu}(xry)) \geq \hat{k} \) or \(C_I(\hat{\alpha}, \hat{\mu}(xry)) + \hat{k} > 2\beta \) for all \(r \in N \). Then \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) \geq \hat{k} \) or \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) + \hat{k} > 2\beta \). As \(\hat{\mu} \) is an i-v 3-prime fuzzy ideal of \(N \), we get

\[
C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\beta, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry))) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\beta, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)))
\]

We get following cases.

Case (i): Suppose \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) \geq \hat{k} \). Then \(C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\beta, \hat{k}) \)

\[
\geq T_I(\beta, \hat{k}) = \hat{k} \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(y)) \geq \hat{k} \Rightarrow x \in \hat{\mu}_{kqv} \quad \text{or} \quad y \in \hat{\mu}_{kqv}.
\]

Therefore \(\hat{\mu}_{kqv} \) is a 3-prime ideal of \(N \). Proof is similar for \(\hat{k} = \hat{\beta} \). Suppose \(\hat{k} > \hat{\beta} \). Then \(T_I(\hat{\beta}, \hat{k}) \)

\[
\geq T_I(\hat{\beta}, \hat{k}) = \hat{\beta} \quad \text{Hence} \quad C_I(\hat{\alpha}, \hat{\mu}(x)) \geq \hat{\beta} \quad \text{and} \quad \hat{k} > \hat{\beta} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} \geq \hat{\beta} + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > 2\hat{\beta} \Rightarrow x \in \hat{\mu}_{kqv}.
\]

Similarly we can prove \(y \in \hat{\mu}_{kqv} \) Therefore \(\hat{\mu}_{kqv} \) is a 3-prime ideal of \(N \).

Case (ii): Suppose \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) + \hat{k} > 2\hat{\beta} \). Then \(C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) \)

\[
> 2\hat{\beta} - \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\beta, (2\hat{\beta} - \hat{k})) \quad \text{or} \quad C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\beta, (2\hat{\beta} - \hat{k})).
\]

Suppose \(\hat{\beta} \geq \hat{k} \). Then \(T_I(\beta, (2\hat{\beta} - \hat{k})) \geq T_I(\hat{\beta}, \hat{k}) = \hat{k} \). Hence \(C_I(\hat{\alpha}, \hat{\mu}(x)) \)

123
3.4. Interval Valued Prime Fuzzy Ideals

If $c \geq d$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) \geq \hat{k} \Rightarrow x \in \hat{\mu}_{k,vq}$ or $y \in \hat{\mu}_{k,vq}$. Proof is similar for $k = \hat{\beta}$. Suppose $k > \hat{\beta}$. Then $T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \geq T_I(2\hat{\beta} - \hat{k}, 2\hat{\beta} - \hat{k}) = 2\hat{\beta} - \hat{k}$. Hence $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq 2\hat{\beta} - \hat{k}$ and $k > (2\hat{\beta} - \hat{k}) \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > 2\hat{\beta} \Rightarrow x \in \hat{\mu}_{k,vq}$. Similarly we can prove $y \in \hat{\mu}_{k,vq}$. Therefore $\hat{\mu}_{k,vq}$ is a 3-prime ideal of N.

To prove (2), let for every $\hat{k} \in ([0, 0], [1, 1])$, $\hat{\mu}_{k,vq}$ is a 3-prime ideal of N. Then by Theorem 2.4.3(2), $\hat{\mu}$ is an i-v fuzzy ideal of N. We will prove $\hat{\mu}$ is an i-v 3-prime fuzzy ideal of N. Suppose there exists $x, y \in N$ such that $C_I(\hat{\alpha}, \hat{\mu}(x)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf \{\hat{\mu}(xry)\}_r) \leq r \in N)$ and $C_I(\hat{\alpha}, \hat{\mu}(y)) < \inf \{\hat{\mu}(xry)\}_r \leq r \in N)$. Then $C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k}$, $C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k}$, $C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k}$ and $\hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf \{\hat{\mu}(xry)\}_r) \leq r \in N) \leq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xry))) \leq \hat{k} \wedge C_I(\hat{\alpha}, \hat{\mu}(xry))$ for all $r \in N$. Then $C_I(\hat{\alpha}, \hat{\mu}(xry)) \geq \hat{k}$ for all $r \in N$ and $C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k}$, $C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k}$. Hence for $\hat{k} \in ([0, 0], [1, 1])$, we get $xry \in \hat{\mu}_{k,vq}$ for all $r \in N$ however $x \notin \hat{\mu}_{k,vq}$ and $y \notin \hat{\mu}_{k,vq}$. We get a contradiction to the fact that $\hat{\mu}_{k,vq}$ is a 3-prime ideal of N for all $\hat{k} \in ([0, 0], [1, 1])$. Therefore $\hat{\mu}$ is an i-v 3-prime fuzzy ideal of N.

\textbf{Theorem 3.4.3. Let $\hat{\mu}$ be an i-v fuzzy ideal of N.}

(1) If $\hat{\mu}$ is an i-v c-prime fuzzy ideal of N with associated i-v idempotent t-norm T_I then for every $\hat{k} \in ([0, 0], [1, 1])$, $\hat{\mu}_{k,vq}$ is a c-prime ideal of N.

(2) If for every $\hat{k} \in ([0, 0], [1, 1])$, $\hat{\mu}_{k,vq}$ is a c-prime ideal of N then $\hat{\mu}$ is an i-v c-prime fuzzy ideal of N.

\textbf{Proof.} To prove (1), let $\hat{\mu}$ be an i-v c-prime fuzzy ideal of N with associated i-v idempotent t-norm T_I. Then by Theorem 2.4.3(1), we get for every $\hat{k} \in ([0, 0], [1, 1])$, $\hat{\mu}_{k,vq}$ is an ideal of N. Let $\hat{k} \in ([0, 0], [1, 1])$. We will prove $\hat{\mu}_{k,vq}$ is a c-prime ideal of N.

Let $x, y \in N$ such that $xry \in \hat{\mu}_{k,vq}$ $\Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) \geq \hat{k}$ or $C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > 2\hat{\beta}$. As $\hat{\mu}$ is an i-v c-prime fuzzy ideal of N, $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xry))) \text{ or } C_I(\hat{\alpha}, \hat{\mu}(y))$
3.4. Interval Valued Prime Fuzzy Ideals

\[\geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \]. We get following cases.

Case (i): Suppose \(C_I(\hat{\alpha}, \hat{\mu}(xy)) \geq \hat{k} \). Then \(C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k} \) or \(C_I(\hat{\alpha}, \hat{\mu}(y)) \geq \hat{k} \Rightarrow x \in \hat{\mu}_{k\wedge q} \) or \(y \in \hat{\mu}_{k\vee q} \). Therefore \(\hat{\mu}_{k\vee q} \) is a c-prime ideal of \(N \). Proof is similar for \(\hat{k} = \hat{\beta} \). Suppose \(\hat{k} > \hat{\beta} \). Then \(T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta} \). Hence \(C_I(\hat{\alpha}, \hat{\mu}(x)) \geq \hat{\beta} \) and \(\hat{k} > \hat{\beta} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} \geq \hat{\beta} + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta} \)

\[\Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > 2\hat{\beta} \Rightarrow x \in \hat{\mu}_{k\vee q} \). Similarly we can prove \(y \in \hat{\mu}_{k\vee q} \). Therefore \(\hat{\mu}_{k\vee q} \) is a c-prime ideal of \(N \).

Case (ii) Suppose \(C_I(\hat{\alpha}, \hat{\mu}(xy)) + \hat{k} > 2\hat{\beta} \). Then \(C_I(\hat{\alpha}, \hat{\mu}(xy)) > 2\hat{\beta} - \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \) or \(C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \). Suppose \(\hat{\beta} \geq \hat{k} \). Then \(T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \geq T_I(\hat{\beta}, \hat{k}) = \hat{k} \). Hence \(C_I(\hat{\alpha}, \hat{\mu}(x)) \geq \hat{k} \) or \(C_I(\hat{\alpha}, \hat{\mu}(y)) \geq \hat{k} \). Suppose \(\hat{k} > \hat{\beta} \). Then \(T_I(\hat{\beta}, (2\hat{\beta} - \hat{k})) \geq T_I(2\hat{\beta} - \hat{k}, 2\hat{\beta} - \hat{k}) = 2\hat{\beta} - \hat{k} \). Hence \(C_I(\hat{\alpha}, \hat{\mu}(x)) \geq 2\hat{\beta} - \hat{k} \) and \(\hat{k} > (2\hat{\beta} - \hat{k}) \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > 2\hat{\beta} \Rightarrow x \in \hat{\mu}_{k\vee q} \). Similarly we can prove \(y \in \hat{\mu}_{k\vee q} \). Therefore \(\hat{\mu}_{k\vee q} \) is a c-prime ideal of \(N \).

To prove (2), let for every \(\hat{k} \in ([0,0], [1,1]) \), \(\hat{\mu}_{k\vee q} \) is a c-prime ideal of \(N \). Then by Theorem 2.4.3(2), \(\hat{\mu} \) is an i-v fuzzy ideal of \(N \). We will prove \(\hat{\mu} \) is an i-v c-prime fuzzy ideal of \(N \). Suppose there exists \(x, y \in N \) such that \(C_I(\hat{\alpha}, \hat{\mu}(x)) \) lower than \(T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \) and \(C_I(\hat{\alpha}, \hat{\mu}(y)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \). Choose \(\hat{k} \in D([0,1]) \) such that \(C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k} \) lower than \(T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \) and \(C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} \) lower than \(T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \). Then \(C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k} \), \(C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} \) and \(\hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \) lower than \(T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) \) lower than \(\hat{\beta} \wedge C_I(\hat{\alpha}, \hat{\mu}(xy)) \). Then \(C_I(\hat{\alpha}, \hat{\mu}(xy)) \geq \hat{k} \) and \(C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k} \), \(C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} \). Hence for \(\hat{k} \in ([0,0], [1,1]) \), we get \(xy \in \hat{\mu}_{k\vee q} \) however \(x \notin \hat{\mu}_{k\wedge q} \) and \(y \notin \hat{\mu}_{k\wedge q} \). We get a contradiction to the fact that \(\hat{\mu}_{k\vee q} \) is a c-prime ideal of \(N \) for all \(\hat{k} \in ([0,0], [1,1]) \). Therefore \(\hat{\mu} \) is an i-v c-prime fuzzy ideal of \(N \).

\[\square \]

Theorem 3.4.4. Let \(\hat{k}, \hat{n} \in D([0,1]) \).

(1) Let \(\hat{\mu} \) be an i-v equiprime fuzzy ideal of \(N \) with associated i-v idempotent t-norm
3.4. Interval Valued Prime Fuzzy Ideals

T_1. Then for each $a, x, y \in N$, $(arx - ary)_k \in \hat{\mu}_q$ for all $r \in N \Rightarrow a_k \in \hat{\mu}_q$ or $(x - y)_k \in \hat{\mu}_q$.

Conversely, if $\hat{\mu}$ is an i-v fuzzy subset of N and i-v fuzzy points satisfy the following properties:

(i) $x_k, y_h \in \hat{\mu} \Rightarrow (x + y)_{T(j, k)} \in \hat{\mu}_q$, where T_j is an idempotent i-v t-norm,

(ii) $x_k \in \hat{\mu} \Rightarrow (-x)_k \in \hat{\mu}_q$, (iii) $x_k \in \hat{\mu}, y \in N \Rightarrow (y + x - y)_k \in \hat{\mu}_q$,

(iv) $x_k \in \hat{\mu}, y \in N \Rightarrow (xy)_k \in \hat{\mu}_q$, (v) $i_k \in \hat{\mu}, x, y \in N \Rightarrow (x(y + i) - xy)_k \in \hat{\mu}_q$

then $\hat{\mu}$ is an i-v fuzzy ideal of N. Further

(vi) if $\hat{\mu}$ is an i-v fuzzy subset of N and i-v fuzzy points satisfy properties (i),(ii),(iii),(iv), (v) and for each $a, x, y \in N$, $(arx - ary)_k \in \hat{\mu}_q$ for all $r \in N$

$\Rightarrow a_k \in \hat{\mu}_q$ or $(x - y)_k \in \hat{\mu}_q$ then $\hat{\mu}$ is an i-v equiprime fuzzy ideal of N.

Proof. To prove (1), let $\hat{k} \in D([0, 1])$ and $a, x, y \in N$ such that $(arx - ary)_k \in \hat{\mu}$ for all $r \in N$. Then $C_1(\hat{\alpha}, \hat{\mu}(arx - ary)) \geq \hat{k}$ for all $r \in N$

$\Rightarrow C_1(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)) \geq \hat{k}$. As $\hat{\mu}$ is an i-v equiprime fuzzy ideal of N, we get

$C_1(\hat{\alpha}, \hat{\mu}(a)) \geq T_1(\hat{\beta}, C_1(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$ or

$C_1(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_1(\hat{\beta}, C_1(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$.

Hence $C_1(\hat{\alpha}, \hat{\mu}(a)) \geq T_1(\hat{\beta}, \hat{k})$ or $C_1(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_1(\hat{\beta}, \hat{k})$. Suppose $\hat{\beta} \geq \hat{k}$. Then $C_1(\hat{\alpha}, \hat{\mu}(a)) \geq T_1(\hat{\beta}, \hat{k}) \geq T_1(\hat{k}, \hat{k}) = k$ or $C_1(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_1(\hat{\beta}, \hat{k}) \geq T_1(\hat{k}, \hat{k})$

$= \hat{k}$. Hence $a \in \hat{\mu}_q$ or $(x - y) \in \hat{\mu}_q$. Proof is similar for $\hat{\beta} < \hat{k}$. Then $C_1(\hat{\alpha}, \hat{\mu}(a)) \geq T_1(\hat{\beta}, \hat{k}) \geq T_1(\hat{\beta}, \hat{\beta}) = \hat{\beta}$ or $C_1(\hat{\alpha}, \hat{\mu}(x - y)) \geq T_1(\hat{\beta}, \hat{k}) \geq T_1(\hat{\beta}, \hat{\beta}) = \hat{\beta}$.

Hence $C_1(\hat{\alpha}, \hat{\mu}(a)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}$ or $C_1(\hat{\alpha}, \hat{\mu}(x - y)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}$.

Therefore $a \in \hat{\mu}_q$ or $(x - y) \in \hat{\mu}_q$.

Conversely, let $\hat{\mu}$ be an i-v fuzzy subset of N and i-v fuzzy points satisfy (i),(ii),(iii),(iv) and (v). Then by Theorem 2.4.4, we get $\hat{\mu}$ is an i-v fuzzy ideal of N. Now suppose i-v fuzzy points satisfy (vi) and $\hat{\mu}$ is not an i-v equiprime fuzzy ideal of N. Then there exists $a, x, y \in N$ such that

$C_1(\hat{\alpha}, \hat{\mu}(a)) < T_1(\hat{\beta}, C_1(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary)))$ and
3.4. Interval Valued Prime Fuzzy Ideals

\[C_I(\hat{\alpha}, \hat{\mu}(x - y)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))). \]

Choose \(\hat{k} \in (\hat{\alpha}, \hat{\beta}) \) such that
\[C_I(\hat{\alpha}, \hat{\mu}(a)) < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) \]
and
\[C_I(\hat{\alpha}, \hat{\mu}(x - y)) < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))). \]

Then
\[C_I(\hat{\alpha}, \hat{\mu}(a)) < k < T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) > \hat{k} \]
\[\Rightarrow C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(arx - ary))) > \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(arx - ary))) \geq \hat{k} \text{ for all } r \in N. \]
Hence
\[(arx - ary)_{\hat{k}} \in \hat{\mu}_q \text{ for all } r \in N, \text{ however } a_{\hat{k}} \notin \hat{\mu}_q \text{ and } (x - y)_{\hat{k}} \notin \hat{\mu}_q. \]
We get a contradiction to the assumption (vi). Therefore \(\hat{\mu} \) is an i-v equiprime fuzzy ideal of \(N \).

Theorem 3.4.5. Let \(\hat{k}, \hat{n} \in D([0, 1]) \).

(1) Let \(\hat{\mu} \) be an i-v 3-prime fuzzy ideal of \(N \) with associated i-v idempotent t-norm \(T_I \).
Then for each \(x, y \in N, (xry)_{\hat{k}} \in \hat{\mu}_q \) for all \(r \in N \Rightarrow x_{\hat{k}} \in \hat{\mu}_q \) or \(y_{\hat{k}} \in \hat{\mu}_q \).
Conversely, if \(\hat{\mu} \) be an i-v fuzzy subset of \(N \) and i-v fuzzy points satisfy the following properties:

(i) \(x_{\hat{k}}, y_{\hat{n}} \in \hat{\mu} \Rightarrow (x + y)_{T_I(\hat{k}, \hat{n})} \in \hat{\mu}_q \), where \(T_I \) is an idempotent i-v t-norm,
(ii) \(x_{\hat{k}} \in \hat{\mu} \Rightarrow (-x)_{\hat{k}} \in \hat{\mu}_q \), (iii) \(x_{\hat{k}} \in \hat{\mu}, y \in N \Rightarrow (y + x)_{\hat{k}} \in \hat{\mu}_q \),
(iv) \(x_{\hat{k}} \in \hat{\mu}, y \in N \Rightarrow (xy)_{\hat{k}} \in \hat{\mu}_q \), (v) \(i_{\hat{k}} \in \hat{\mu}, x, y \in N \Rightarrow (xy + i - xy)_{\hat{k}} \in \hat{\mu}_q \)
then \(\hat{\mu} \) is an i-v fuzzy ideal of \(N \). Further

(vi) if \(\hat{\mu} \) is an i-v fuzzy subset of \(N \) and i-v fuzzy points satisfy properties (i), (ii), (iii), (iv),
(v) and for each \(x, y \in N, (xry)_{\hat{k}} \in \hat{\mu}_q \) for all \(r \in N \)
\[\Rightarrow x_{\hat{k}} \in \hat{\mu}_q \text{ or } y_{\hat{k}} \in \hat{\mu}_q \text{ then } \hat{\mu} \text{ is an i-v 3-prime fuzzy ideal of } N. \]

Proof. To prove (1), let \(\hat{k} \in D([0, 1]) \) and \(x, y \in N \) such that \((xry)_{\hat{k}} \in \hat{\mu} \) for all \(r \in N \). Then
\[C_I(\hat{\alpha}, \hat{\mu}(xry)) \geq \hat{k} \text{ for all } r \in N \Rightarrow C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry)) \geq \hat{k}. \]
As \(\hat{\mu} \) is an i-v 3-prime fuzzy ideal of \(N \), we get
\[C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \inf_{r \in N} \hat{\mu}(xry))) \text{ or } C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \inf_{r \in N} \hat{\mu}(xry))). \]
Hence
\[C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \text{ or } C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k}). \]
Suppose \(\beta \geq \hat{k} \). Then
\[C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k} \text{ or } C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k}. \]
Hence \(x \in \hat{\mu}_q\) or \(y \in \hat{\mu}_q\). Proof is similar for \(\hat{\beta} = \hat{k}\). Suppose \(\hat{\beta} < \hat{k}\). Then \(C_1(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta}\) or \(C_1(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta}\). Hence \(C_1(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}\) or \(C_1(\hat{\alpha}, \hat{\mu}(y)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}\). Hence \(x \in \hat{\mu}_q\) or \(y \in \hat{\mu}_q\).

Conversely, let \(\hat{\mu}\) be an i-v fuzzy subset of \(N\) and i-v fuzzy points satisfy (i),(ii),(iii),(iv) and (v). Then by Theorem 2.4.4, we get \(\hat{\mu}\) is an i-v fuzzy ideal of \(N\). Now suppose i-v fuzzy points satisfy (vi) and \(\hat{\mu}\) is not an i-v 3-prime fuzzy ideal of \(N\). Then there exists \(x, y \in N\) such that

\[
C_1(\hat{\alpha}, \hat{\mu}(x)) < T_I(\hat{\beta}, C_1(\hat{\alpha}, \inf_{\mu(xry)})) \quad \text{and} \quad C_1(\hat{\alpha}, \hat{\mu}(y)) < T_I(\hat{\beta}, C_1(\hat{\alpha}, \inf_{\mu(xry)})).
\]

Choose \(\hat{k} \in (\hat{\alpha}, \hat{\beta})\) such that

\[
C_1(\hat{\alpha}, \hat{\mu}(x)) < \hat{k} < T_I(\hat{\beta}, C_1(\hat{\alpha}, \inf_{\mu(xry)})) \quad \text{and} \quad C_1(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} < T_I(\hat{\beta}, C_1(\hat{\alpha}, \inf_{\mu(xry)})).
\]

Then

\[
C_1(\hat{\alpha}, \hat{\mu}(x)) < \hat{k}, C_1(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} \quad \text{and} \quad T_I(\hat{\beta}, C_1(\hat{\alpha}, \inf_{\mu(xry)})) > \hat{k}
\]

\[
\Rightarrow C_1(\hat{\alpha}, \inf_{\mu(xry)}) > \hat{k} \Rightarrow C_1(\hat{\alpha}, \hat{\mu}(xry))) \geq \hat{k} \quad \text{for all} \ r \in N. \quad \text{Hence} \ (xry)_k \in \hat{\mu}_q \quad \text{for all} \ r \in N, \quad \text{however} \ x_k \notin \hat{\mu}_q \quad \text{and} \ y_k \notin \hat{\mu}_q. \quad \text{We get a contradiction to the assumption (vi). Therefore} \ \hat{\mu} \ \text{is an i-v 3-prime fuzzy ideal of} \ N.
\]

Theorem 3.4.6. Let \(\hat{k}, \hat{n} \in D([0,1])\).

(1) Let \(\hat{\mu}\) be an i-v c-prime fuzzy ideal of \(N\) with associated i-v idempotent t-norm \(T_I\). Then for each \(x, y \in N, (xry)_k \in \hat{\mu}_q\) for all \(r \in N \Rightarrow x_k \in \hat{\mu}_q \) or \(y_k \in \hat{\mu}_q\).

Conversely, if \(\hat{\mu}\) be an i-v fuzzy subset of \(N\) and i-v fuzzy points satisfy the following properties:

(i) \(x_k, y_h \in \hat{\mu} \Rightarrow (x + y)_{T_J(k, h)} \in \hat{\mu}_q, \) where \(T_J\) is an idempotent i-v t-norm,

(ii) \(x_k \in \hat{\mu} \Rightarrow (-x)_k \in \hat{\mu}_q, \) (iii) \(x_k \in \hat{\mu}, y \in N \Rightarrow (y + x - y)_k \in \hat{\mu}_q,\)

(iv) \(x_k \in \hat{\mu}, y \in N \Rightarrow (x)_k \in \hat{\mu}_q, \) (vi) \(i_k \in \hat{\mu}, x, y \in N \Rightarrow (x + i - xy)_k \in \hat{\mu}_q\)

then \(\hat{\mu}\) is an i-v fuzzy ideal of \(N\). Further

(vi) if \(\hat{\mu}\) is an i-v fuzzy subset of \(N\) and i-v fuzzy points satisfy properties (i),(ii),(iii),(iv), (v) and for each \(x, y \in N, (xry)_k \in \hat{\mu}_q \Rightarrow x_k \in \hat{\mu}_q \) or \(y_k \in \hat{\mu}_q\) then \(\hat{\mu}\) is an i-v c-prime
3.4. Interval Valued Prime Fuzzy Ideals

fuzzy ideal of N.

Proof. To prove (1), let $\hat{k} \in D([0,1])$ and $x, y \in N$ such that $(xy)_{\hat{k}} \in \hat{\mu}$. Then $C_I(\hat{\alpha}, \hat{\mu}(xy)) \geq \hat{k}$. As $\hat{\mu}$ is an i-v c-prime fuzzy ideal of N, we get $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$.

Hence $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k})$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k})$. Suppose $\hat{\beta} \geq \hat{k}$. Then $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k}$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{k}, \hat{k}) = \hat{k}$.

Hence $x \in \hat{\mu}_q$ or $y \in \hat{\mu}_q$. Proof is similar for $\hat{\beta} < \hat{k}$. Suppose $\hat{\beta} < \hat{k}$. Then $C_I(\hat{\alpha}, \hat{\mu}(x)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta}$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) \geq T_I(\hat{\beta}, \hat{k}) \geq T_I(\hat{\beta}, \hat{\beta}) = \hat{\beta}$.

Hence $C_I(\hat{\alpha}, \hat{\mu}(x)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}$ or $C_I(\hat{\alpha}, \hat{\mu}(y)) + \hat{k} > \hat{\beta} + \hat{\beta} = 2\hat{\beta}$. Hence $x \in \hat{\mu}_q$ or $y \in \hat{\mu}_q$.

Conversely, let $\hat{\mu}$ be an i-v fuzzy subset of N and i-v fuzzy points satisfy (i),(ii),(iii),(iv) and (v). Then by Theorem 2.4.4, we get $\hat{\mu}$ is an i-v fuzzy ideal of N. Now suppose i-v fuzzy points satisfy (vi) and $\hat{\mu}$ is not an i-v c-prime fuzzy ideal of N. Then there exists $x, y \in N$ such that $C_I(\hat{\alpha}, \hat{\mu}(x)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$ and $C_I(\hat{\alpha}, \hat{\mu}(y)) < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$. Choose $\hat{k} \in (\hat{\alpha}, \hat{\beta})$ such that $C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$ and $C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k} < T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy)))$. Then $C_I(\hat{\alpha}, \hat{\mu}(x)) < \hat{k}$, $C_I(\hat{\alpha}, \hat{\mu}(y)) < \hat{k}$ and $T_I(\hat{\beta}, C_I(\hat{\alpha}, \hat{\mu}(xy))) > \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(xy))) > \hat{k} \Rightarrow C_I(\hat{\alpha}, \hat{\mu}(xy))) \geq \hat{k}$. Hence $(xy)_{\hat{k}} \in \hat{\mu}_q$, however $x_{\hat{k}} \notin \hat{\mu}_q$ and $y_{\hat{k}} \notin \hat{\mu}_q$. We get a contradiction to the assumption (vi). Therefore $\hat{\mu}$ is an i-v c-prime fuzzy ideal of N.

□