List of Figures

Figure 2.1	Lignin from gymnosperms showing different linkages between the pheylpropane units (Pérez et al. 2002)	Page No. 7
Figure 2.2	Structure of monolignols	Page No. 7
Figure 2.3	‘Metabolic grid’ for lignin biosynthesis	Page No. 9
Figure 2.4	Lignin degradation pathway including enzymatic reactions and oxygen activation	Page No. 13
Figure 2.5	Mechanism of laccase action with reference to mediator	Page No. 22
Figure 2.6	Active site of laccase	Page No. 23
Figure 2.7	Laccase-catalyzed reaction with ABTS	Page No. 25
Figure 2.8	Mechanism of action of lignin peroxidase	Page No. 26
Figure 2.9	Catalytic cycle of lignin peroxidase	Page No. 27
Figure 2.10	Lignin peroxidase-catalyzed ring cleavage of azure B (heterocyclic thiazine dye)	Page No. 28
Figure 2.11	Mechanism of action of manganese peroxidase	Page No. 29
Figure 2.12	Catalytic cycle of manganese peroxidase	Page No. 30
Figure 2.13	Conserved organization of the pre-rRNA	Page No. 34
Figure 3.1	Structure of guaiacol	Page No. 47
Figure 3.2	Structure of crystal violet	Page No. 47
Figure 3.3	Lac-positive bacterial isolates showing reddish brown zones on guaiacol containing nutrient agar medium due to formation of tetraguaiacol	Page No. 55-57
Figure 3.4	LiP-positive bacterial isolates showing clear zones around the colony and white coloration on azure B containing nutrient medium	Page No. 58
Figure 3.5 Lac-positive fungal isolates showing yellow green zones due to dye decolorization in crystal violet medium

Figure 3.6 Lac-positive fungal isolates showing reddish brown coloration in Olga et al. medium due to Lac-catalyzed oxidation of guaiacol

Figure 3.7 LiP-positive fungal isolates showing clear zones with white colonies using azure B

Figure 4.1 Lignin-degradation by fungi

Figure 4.2 Microscopic examination of ligninolytic bacterial isolates after Gram staining

Figure 4.3 Ligninolytic fungal isolates showing positive starch hydrolysis test

Figure 5.1 Laccase-catalyzed reaction with ABTS

Figure 5.2 Lignin peroxidase-catalyzed reaction of azure B (heterocyclic thiazine dye)

Figure 5.3 Mechanism of action of manganese peroxidase

Figure 5.4 Structure of phenol red

Figure 5.5 Standard curve for BSA

Figure 5.6 Analyses of protein content from bacterial isolates

Figure 5.7 Analyses of protein content from fungal isolates

Figure 6.1 Organization of rRNA genes in prokaryotes and eukaryotes

Figure 6.2 Genomic DNA from bacterial isolates. Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 6, Lane 2- Isolate no. 12, Lane 3- Isolate no. 13, Lane 4- Isolate no. 14, Lane 5- Isolate no. 15, Lane 6- Isolate no. 16

Figure 6.3 PCR amplification of 16S rRNA gene using 16S rRNA-
specific primers. Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 6, Lane 2- Isolate no. 12, Lane 3- Isolate no. 13, Lane 4- Isolate no. 14, Lane 5- Isolate no. 15, Lane 6- Isolate no. 16

Figure 6.4 Genomic DNA from fungal isolates. Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 3, Lane 2- Isolate no. 5, Lane 3- Isolate no. 11, Lane 4- Isolate no. 23, Lane 5- Isolate no. 26

Figure 6.5 PCR amplification of 18S rRNA gene using 18S rRNA-specific primers. Lane M- 100 bp DNA ladder, Lane 1- Isolate no. 3, Lane 2- Isolate no. 5, Lane 3- Isolate no. 11, Lane 4- Isolate no. 23, Lane 5- Isolate no. 26

Figure 6.6 Phylogenetic tree of *Agaricomycetes sp.*

Figure 6.7 Phylogenetic tree of *Schizophyllum commune*

Figure 6.8 Phylogenetic tree of *Basidiomycota sp.*

Figure 6.9 Phylogenetic tree of *Fusarium oxysporum*

Figure 6.10 Phylogenetic tree of *Bipolaris tetramera*

Figure 6.11 RAPD analysis of bacterial isolates using OPA-1 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)]

Figure 6.12 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-1 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6,
Staphylococcus succinus; Strain 4- Isolate no. 13,
Bacillus thuringiensis; Strain 5- Isolate no. 12, **Bacillus anthracis**; Strain 6- Isolate no. 15, **Pseudomonas**

Figure 6.13 RAPD analysis of bacterial isolates using OPA-3 random primers. (Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, **Bacillus cereus**); Lane 2- Isolate no. 14 (strain-2, **Bacillus mycoides**); Lane 3- Isolate no. 6 (strain-3, **Staphylococcus succinus**); Lane 4- Isolate no. 13 (strain-4, **Bacillus thuringiensis**); Lane 5- Isolate no. 12 (strain-5, **Bacillus anthracis**); Lane 6- Isolate no. 15 (strain-6, **Pseudomonas**))

Figure 6.14 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-3 random primer (Strain 1- Isolate no. 16, **Bacillus cereus**; Strain 2- Isolate no. 14, **Bacillus mycoides**; Strain 3- Isolate no. 6, **Staphylococcus succinus**; Strain 4- Isolate no. 13, **Bacillus thuringiensis**; Strain 5- Isolate no. 12, **Bacillus anthracis**; Strain 6- Isolate no. 15, **Pseudomonas**)

Figure 6.15 RAPD analysis of bacterial isolates using OPA-5 random primers. (Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, **Bacillus cereus**); Lane 2- Isolate no. 14 (strain-2, **Bacillus mycoides**); Lane 3- Isolate no. 6 (strain-3, **Staphylococcus succinus**); Lane 4- Isolate no. 13 (strain-4, **Bacillus thuringiensis**); Lane 5- Isolate no. 12 (strain-5, **Bacillus anthracis**); Lane 6- Isolate no. 15 (strain-6, **Pseudomonas**))

Figure 6.16 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-5 random primer (Strain 1- Isolate no. 16, **Bacillus cereus**; Strain 2- Isolate no. 14, **Bacillus mycoides**; Strain 3- Isolate no. 6, **Staphylococcus succinus**; Strain 4- Isolate no. 13, **Bacillus thuringiensis**; Strain 5- Isolate no. 12, **Bacillus anthracis**; Strain 6- Isolate no. 15, **Pseudomonas**
Figure 6.17 RAPD analysis of bacterial isolates using OPA-9 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1-Isolate no. 16 (strain-1, Bacillus cereus); Lane 2- Isolate no. 14 (strain-2, Bacillus mycoides); Lane 3- Isolate no. 6 (strain-3, Staphylococcus succinus); Lane 4- Isolate no. 13 (strain-4, Bacillus thuringiensis); Lane 5- Isolate no. 12 (strain-5, Bacillus anthracis); Lane 6- Isolate no. 15 (strain-6, Pseudomonas)]

Figure 6.18 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-9 random primer (Strain 1- Isolate no. 16, Bacillus cereus; Strain 2- Isolate no. 14, Bacillus mycoides; Strain 3- Isolate no. 6, Staphylococcus succinus; Strain 4- Isolate no. 13, Bacillus thuringiensis; Strain 5- Isolate no. 12, Bacillus anthracis; Strain 6- Isolate no. 15, Pseudomonas)

Figure 6.19 RAPD analysis of bacterial isolates using OPA-10 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1-Isolate no. 16 (strain-1, Bacillus cereus); Lane 2- Isolate no. 14 (strain-2, Bacillus mycoides); Lane 3- Isolate no. 6 (strain-3, Staphylococcus succinus); Lane 4- Isolate no. 13 (strain-4, Bacillus thuringiensis); Lane 5- Isolate no. 12 (strain-5, Bacillus anthracis); Lane 6- Isolate no. 15 (strain-6, Pseudomonas)]

Figure 6.20 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-10 random primer (Strain 1- Isolate no. 16, Bacillus cereus; Strain 2- Isolate no. 14, Bacillus mycoides; Strain 3- Isolate no. 6, Staphylococcus succinus; Strain 4- Isolate no. 13, Bacillus thuringiensis; Strain 5- Isolate no. 12, Bacillus anthracis; Strain 6- Isolate no. 15, Pseudomonas)

Figure 6.21 RAPD analysis of bacterial isolates using OPA-11 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1-
Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)

Figure 6.22 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-11 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.23 RAPD analysis of bacterial isolates using OPA-12 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco RI* and *Hind III*), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)

Figure 6.24 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-12 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.25 RAPD analysis of bacterial isolates using OPA-13 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco RI* and *Hind III*), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate
no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)

Figure 6.26 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-13 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.27 RAPD analysis of bacterial isolates using OPA-15 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)]

Figure 6.28 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-15 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.29 RAPD analysis of bacterial isolates using OPA-18 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)]
Figure 6.30 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-18 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.31 RAPD analysis of bacterial isolates using OPA-20 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 16 (strain-1, *Bacillus cereus*); Lane 2- Isolate no. 14 (strain-2, *Bacillus mycoides*); Lane 3- Isolate no. 6 (strain-3, *Staphylococcus succinus*); Lane 4- Isolate no. 13 (strain-4, *Bacillus thuringiensis*); Lane 5- Isolate no. 12 (strain-5, *Bacillus anthracis*); Lane 6- Isolate no. 15 (strain-6, *Pseudomonas*)]

Figure 6.32 Combined UPGMA dendrogram showing relationship among 6 bacterial isolates using OPA-20 random primer (Strain 1- Isolate no. 16, *Bacillus cereus*; Strain 2- Isolate no. 14, *Bacillus mycoides*; Strain 3- Isolate no. 6, *Staphylococcus succinus*; Strain 4- Isolate no. 13, *Bacillus thuringiensis*; Strain 5- Isolate no. 12, *Bacillus anthracis*; Strain 6- Isolate no. 15, *Pseudomonas*)

Figure 6.33 RAPD analysis of fungal isolates using OPA-1 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no. 11 (strain-5, *Basidiomycota sp.*)]

Figure 6.34 Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA-1 random primer (Strain 1- Isolate no. 3, *Agaricomycetes sp.*; Strain 2- Isolate no. 26, *Bipolaris tetramera*; Strain 3- Isolate no.
23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.*

Figure 6.35 RAPD analysis of fungal isolates using OPA-2 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco* RI and *Hind* III), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no. 11 (strain-5, *Basidiomycota sp.*)]

Figure 6.36 Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 2 random primer (Strain 1- Isolate no. 3, *Agaricomycetes sp.*; Strain 2- Isolate no. 26, *Bipolaris tetramera*; Strain 3- Isolate no. 23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.*)

Figure 6.37 RAPD analysis of fungal isolates using OPA-5 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco* RI and *Hind* III), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no. 11 (strain-5, *Basidiomycota sp.*)]

Figure 6.38 Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 5 random primer (Strain 1- Isolate no. 3, *Agaricomycetes sp.*; Strain 2- Isolate no. 26, *Bipolaris tetramera*; Strain 3- Isolate no. 23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.*)

Figure 6.39 RAPD analysis of fungal isolates using OPA-6 random primers. [Lane M- DNA size marker (λ DNA double
digested with *Eco RI* and *Hind III*), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no. 11 (strain-5, *Basidiomycota sp.*)

Figure 6.40 Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 6 random primer (Strain 1- Isolate no. 3, *Agaricomycetes sp.*; Strain 2- Isolate no. 26, *Bipolaris tetramera*; Strain 3- Isolate no. 23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.*)

Figure 6.41 RAPD analysis of fungal isolates using OPA-11 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco RI* and *Hind III*), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no. 11 (strain-5, *Basidiomycota sp.*)

Figure 6.42 Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 11 random primer (Strain 1- Isolate no. 3, *Agaricomycetes sp.*; Strain 2- Isolate no. 26, *Bipolaris tetramera*; Strain 3- Isolate no. 23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.*)

Figure 6.43 RAPD analysis of fungal isolates using OPA-13 random primers. [Lane M- DNA size marker (λ DNA double digested with *Eco RI* and *Hind III*), Lane 1- Isolate no. 3 (strain-1, *Agaricomycetes sp.*); Lane 2- Isolate no. 26 (strain-2, *Bipolaris tetramera*); Lane 3- Isolate no. 23 (strain-3, *Fusarium oxysporum*); Lane 4- Isolate no. 5 (strain-4, *Schizophyllum commune*); Lane 5- Isolate no.
Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 13 random primer (Strain 1- Isolate no. 3, Agaricomycetes sp.; Strain 2- Isolate no. 26, Bipolaris tetramera; Strain 3- Isolate no. 23, Fusarium oxysporum; Strain 4- Isolate no. 5, Schizophyllum commune; Strain 5- Isolate no. 11, Basidiomycota sp.)

Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 15 random primer (Strain 1- Isolate no. 3, Agaricomycetes sp.; Strain 2- Isolate no. 26, Bipolaris tetramera; Strain 3- Isolate no. 23, Fusarium oxysporum; Strain 4- Isolate no. 5, Schizophyllum commune; Strain 5- Isolate no. 11, Basidiomycota sp.)

Combined UPGMA dendrogram showing relationship among 5 fungal isolates using OPA 20 random primer (Strain 1- Isolate no. 3, Agaricomycetes sp.; Strain 2- Isolate no. 26, Bipolaris tetramera; Strain 3- Isolate no. 23, Fusarium oxysporum; Strain 4- Isolate no. 5, Schizophyllum commune; Strain 5- Isolate no. 11, Basidiomycota sp.)

RAPD analysis of fungal isolates using OPA-15 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 3 (strain-1, Agaricomycetes sp.); Lane 2- Isolate no. 26 (strain-2, Bipolaris tetramera); Lane 3- Isolate no. 23 (strain-3, Fusarium oxysporum); Lane 4- Isolate no. 5 (strain-4, Schizophyllum commune); Lane 5- Isolate no. 11 (strain-5, Basidiomycota sp.)]

RAPD analysis of fungal isolates using OPA-20 random primers. [Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane 1- Isolate no. 3 (strain-1, Agaricomycetes sp.); Lane 2- Isolate no. 26 (strain-2, Bipolaris tetramera); Lane 3- Isolate no. 23 (strain-3, Fusarium oxysporum); Lane 4- Isolate no. 5 (strain-4, Schizophyllum commune); Lane 5- Isolate no. 11 (strain-5, Basidiomycota sp.)]
23, *Fusarium oxysporum*; Strain 4- Isolate no. 5, *Schizophyllum commune*; Strain 5- Isolate no. 11, *Basidiomycota sp.)*

Figure 6.49 PCR amplification using lignin peroxidase gene specific PCR primers. Lane M- DNA size marker (λ DNA double digested with Eco RI and Hind III), Lane-1 *Basidiomycota sp.*, Lane-2 *Agaricomycetes sp.*, Lane-3 *Fusarium oxysporum*