CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>PARTICULARS</th>
<th>PAGE NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>I-VIII</td>
<td></td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1 Classifications of explosives</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Explosives</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1.1.2 Pyrotechnics</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.1.3 Propellants</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.2 Role of polymeric binder</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1.3 Role of oxidizer</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1.4 Role of metal fuel</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.5 Important characteristic for propellant performance</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.5.1 Mechanical properties</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Thermal properties</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.5.3 Ballistic properties</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>1.6 Different approaches to enhance burning rate</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>1.7 Thermal decomposition behaviour of ammonium perchlorate</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>1.7.1 Thermal decomposition mechanism of ammonium perchlorate</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>1.7.2 Catalysed decomposition of ammonium perchlorate</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>1.8 Role of binder in combustion</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>1.8.1 Decomposition of Binder</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1.8.2 Decomposition of cured HTPB</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1.8.3 Catalysed decomposition of Binder</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1.9 Combustion of composite propellant</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>1.9.1 BDP (Beckstead Derr Price) Model or Multiple Flame Model</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1.9.2 Combustion behaviour of composite propellant</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>1.9.3 Combustion of catalysed composite propellants</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
CONTENTS

1.9.4 Surface reaction of catalysed composite propellant 20

1.10 **General aspects of nano materials** 20

1.11 **Recent development in ballistic modifiers based on transition metals**

1.11.1 Transition metal complexes as ballistic modifier in composite propellant 22

1.11.2 Nano transition metal particles as ballistic modifier in composite propellants 23

1.11.3 Nano metal oxides and mixed transition metal oxides as ballistic modifier in composite propellant 24

1.11.4 Nano mixed transition metal hydroxide as ballistic modifier in composite propellant 26

1.11.5 Application of nano iron oxide as ballistic modifiers 26

1.11.6 Application of nano copper oxide as ballistic modifiers 27

1.11.7 Application of nano cobalt oxide as ballistic modifiers 27

1.11.8 Application of nano manganese oxide as ballistic modifiers 27

1.11.9 Application of nano transition metal oxides (TMOs) as ballistic modifiers in HTPB/AP/Al based composition 28

1.12 **Limitation of the earlier studies and objectives of thesis** 29

1.13 **The scope of present research work** 29

1.14 **References** 31

Chapter II Experimental

2.1 **Raw materials** 43

2.1.1 Liquid raw materials 43

2.1.2 Solid ingredients 46

2.1.3 Other chemicals used during present research 51
work

2.2 Equipment

2.2.1 Rotating Vacuum Dryer 52
2.2.2 Air Classifier Mill (ACM) 52
2.2.3 Vertical Planetary Mixture 53
2.2.4 Casting Assembly 54
2.2.5 Water Jacketed Oven 54
2.2.6 Hot Air Oven 54

2.3 Method

2.3.1 Preparation of nano Fe$_3$O$_4$ 54
2.3.2 Incorporation of burning rate modifiers in composite propellant formulation 55
2.3.3 Casting and curing 57
2.3.4 Extraction of propellant grain 57

2.4 Methodology

2.4.1 Determination of moisture content 57
2.4.2 Determination of hydroxyl value of HTPB 58
2.4.3 Determination of particle size and distribution 59
2.4.4 Determination of crystal phase of material and crystallite size 60
2.4.5 Determination of particle size by NANOPH0X 60
2.4.6 Determination of surface morphology by scanning electron microscopy 60
2.4.7 Determination of particle size by transmission electron microscopy 61
2.4.8 Determination of specific surface area 61
2.4.9 Thermal analysis 61
2.4.10 Determination of purity of TMOs by inductively coupled plasma-atomic emission spectroscopy 62
2.4.11 Determination of volatile matter 62
2.4.12 Determination of viscosity 63
2.4.13 Determination of number average molecular weight
Chapter III Results and Discussion

3.1 Characterization of transition metal oxides
 3.1.1 Determination of purity of transition metal oxides
 3.1.2 Determination of density of transition metal oxides
 3.1.3 Determination of particle size of nano sized TMOs by NANOPHOX particle size analyser
 3.1.4 Determination of particle size of micron sized TMOs by Cilas particle size analyser
 3.1.5 Determination of specific surface area
 3.1.6 Determination of particle size and surface morphology of TMOs
 3.1.7 Powder X-ray diffraction

3.2 Effect of TMOs on thermal decomposition of ammonium perchlorate
 3.2.1 Differential scanning calorimeter
 3.2.2 Thermo gravimetric analysis

3.3 Effect of TMOs on thermal decomposition of Binder (Gum Stock)

3.4 Effect of nano and micron sized TMOs on HTPB/AP/Al based composite propellant formulation
 3.4.1 The formulation details of composite propellant

3.5 Effect of nano and micron sized copper (II) oxide on HTPB/AP/Al based composite propellant formulation
 3.5.1 Effect of nano CuO and micron CuO on viscosity
3.5.2 Effect of nano CuO and micron CuO on mechanical properties

3.5.3 Effect of nano CuO and micron CuO on thermal properties

3.5.4 Effect of nano CuO and micron CuO on ballistic properties

3.6 Effect of nano and micron sized cobalt (II, III) oxide on HTPB/AP/Al based composite propellant formulation

3.6.1 Effect of nano and micron sized cobalt (II, III) oxide on viscosity build up

3.6.2 Effect of nano and micron sized cobalt (II, III) oxide on mechanical properties

3.6.3 Effect of nano and micron sized cobalt (II, III) oxide on thermal properties

3.6.4 Effect of nano and micron sized cobalt (II, III) oxide on ballistic properties

3.7 Effect of nano and micron sized manganese (IV) oxide on HTPB/AP/Al based composite propellant formulation

3.7.1 Effect of nano and micron sized manganese (IV) oxide on viscosity build up

3.7.2 Effect of nano and micron sized manganese (IV) oxide on mechanical properties

3.7.3 Effect of nano and micron sized manganese (IV) oxide on thermal properties

3.7.4 Effect of nano and micron sized manganese (IV) oxide on ballistic properties

3.8 Effect of nano and micron sized chromium (III) oxide on HTPB/AP/Al based composite propellant formulation

3.8.1 Effect of nano and micron sized chromium (III) oxide on viscosity build up
CONTENTS

oxide on viscosity build up
3.8.2 Effect of nano and micron sized chromium (III) oxide on mechanical properties 140
3.8.3 Effect of nano and micron sized chromium (III) oxide on thermal properties 141
3.8.4 Effect of nano and micron sized chromium (III) oxide on ballistic properties 146

3.9 Effect of nano iron (II, III) oxide and nano iron (III) oxide on HTPB/AP/Al based composite propellant formulation
3.9.1 Effect of nano iron (II, III) oxide and nano iron (III) oxide on viscosity build up 150
3.9.2 Effect of nano iron (II, III) oxide and nano iron (III) oxide on mechanical properties 151
3.9.3 Effect of nano iron (II, III) oxide and nano iron (III) oxide on thermal properties 152
3.9.4 Effect of nano iron (II, III) oxide and nano iron (III) oxide on ballistic properties 157

3.10 Comparative performance of studied nano TMOs on desired ballistic properties of composite propellant formulations 160

3.11 References 164

Chapter IV Summary
4.1 Different approaches to achieve higher burning rate 168
4.2 Preparation and characterisation of nano Fe$_3$O$_4$ 169
4.3 Characterization of other TMOs 170
4.4 Effect of TMOs on thermal decomposition temperature of ammonium perchlorate 171
4.5 Effect of TMOs on thermal decomposition of binder 173
4.6 Effect of TMOs on HTPB/AP/Al based composite propellant formulation 174
4.6.1 Effect of TMOs on viscosity build up 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6.2 Effect of TMOs on mechanical properties</td>
<td>175</td>
</tr>
<tr>
<td>4.6.3 Effect of TMOs on thermal properties</td>
<td>175</td>
</tr>
<tr>
<td>4.6.4 Effect of TMOs on ballistic properties</td>
<td>177</td>
</tr>
<tr>
<td>4.7 Future research work related to present study</td>
<td>179</td>
</tr>
<tr>
<td>4.8 Publications</td>
<td>180</td>
</tr>
</tbody>
</table>