List of Contents

List of Tables vii
List of Schemes viii
List of Figures x
Abbreviations xvi
Abstract of Thesis xviii

Section A

<table>
<thead>
<tr>
<th>Section No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chapter 1 Introduction and literature survey on hydroxyalkylation**</td>
<td>1-26</td>
</tr>
<tr>
<td>1.1</td>
<td>Catalysis</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Hydroxyalkylation</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Conventional routes for hydroxyalkylation reaction</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Solid Acid Catalysts</td>
<td>8</td>
</tr>
<tr>
<td>1.3.1</td>
<td>MCM-41 supported phosphotungstic acid</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Metal cations exchanged montmorillonite clay</td>
<td>11</td>
</tr>
<tr>
<td>1.3.3</td>
<td>SO$_2$H–acid grafted silica bound magnetite</td>
<td>13</td>
</tr>
<tr>
<td>1.4</td>
<td>Literature survey on hydroxyalkylation of phenolic compounds</td>
<td>15</td>
</tr>
<tr>
<td>1.5</td>
<td>Scope and objective of present investigation</td>
<td>21</td>
</tr>
<tr>
<td>1.6</td>
<td>References</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Chapter 2 Experimental and physico-chemical characterization</td>
<td>27-51</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>27</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials</td>
<td>27</td>
</tr>
</tbody>
</table>
2.3 Catalyst preparation

2.3.1 Solid acid catalysts

2.3.1.1 MCM-41 supported phosphotungstic acid (PTA)

2.3.1.2 Preparation of $\text{SO}_3\text{H-Fe}_3\text{O}_4@\text{MCM-41}$

2.3.1.3 Preparation of metal cation-exchanged montmorillonite clay

2.3.2 Metal oxide catalysts for oxidation reactions

2.3.2.1 Co_3O_4 nanoparticles

2.3.2.2 Manganese oxide (MnO_x)

2.3.2.3 Synthesis of mixed CoMn-oxide

2.3.2.4 Reduced graphene-MnCo composite oxide

2.3.2.4.1 Graphene oxide (GO)

2.3.2.4.2 r-GO-MnCo nanocomposite

2.4 Characterization methods for solid acid catalysts

2.4.1 X-ray diffraction

2.4.2 Nitrogen physisorption–textural characterization

2.4.3 Temperature programmed desorption of ammonia (NH_3-TPD)

2.4.4 Pyridine FT-IR technique

2.4.5 Thermal analysis

2.4.6 Transmission electron microscopy

2.4.7 Inductively coupled plasma atomic emission spectroscopy (ICP-AES)

2.4.8 X-ray photoelectron spectroscopy (XPS)

2.4.9 Fourier transforms infrared spectroscopy (FT-IR)

2.4.10 Temperature programmed reduction (TPR) and oxidation (TPO)
Chapter 2

2.4.11 Cyclic voltammetry (CV) 45

2.5 Catalyst activity measurement 46

2.5.1 Hydroxyalkylation reactions 46

2.5.1.1 Phenolphthalein synthesis from hydroxyalkylation of phenol with phthalic anhydride 46

2.5.1.2 Hydroxyalkylation of guaiacol to p-vanillyl alcohol 46

2.5.1.3 Hydroxyalkylation of p-cresol with formaldehyde to give bisphenol 46

2.5.2 Oxidation reactions 47

2.5.2.1 Vanillyl alcohol to vanillin 47

2.5.2.2 Vanillyl alcohol to vanillin under base free condition 48

2.5.2.3 p-cresol to p-hydroxybenzaldehyde 48

2.5.2.4 Veratryl alcohol to veratraldehyde 48

2.6 Analytical methods 49

2.7 References 50

Chapter 3 Solid acid catalysts for hydroxyalkylation reactions 52-95

3.1 Introduction 52

3.2 MCM-41 supported phosphotungstic acid for the hydroxyalkylation of phenol to phenolphthalein 53

3.2.1 Experimental 54

3.2.2 Results and discussion 54

3.2.2.1 Catalyst characterization 54

3.2.2.2 Catalytic activity of 20% PTA/MCM-41 59

3.2.2.3 Plausible mechanistic pathway 66
Section B

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Introduction and literature survey on oxidation reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Oxidation</td>
</tr>
<tr>
<td>1.2</td>
<td>Environmentally benign oxidants</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Oxygen (air)</td>
</tr>
<tr>
<td>1.3</td>
<td>Mechanism of metal-catalyzed oxidations</td>
</tr>
<tr>
<td>1.3.1</td>
<td>Homolytic mechanism</td>
</tr>
<tr>
<td>1.3.1.1</td>
<td>Direct homolytic oxidation of organic substrate</td>
</tr>
<tr>
<td>1.3.2</td>
<td>Heterolytic mechanism</td>
</tr>
</tbody>
</table>

iv
Chapter 1

1.3.2.1 Catalytic oxygen transfer

1.4 Side chain oxidation of phenolic compounds

1.5 Literature survey on liquid phase oxidation reactions

1.5.1 Supported noble-metal catalysts

1.5.1.1 Pd-catalysts

1.5.1.2 Au-catalysts

1.5.1.3 Ru-catalysts

1.5.2 Non-noble metal oxide catalysts

1.5.3 Mixed-metal oxides

1.6 References

Chapter 2

Metal oxide catalysts for oxidation reactions

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.2</td>
<td>Mono metallic cobalt oxide (Co$_3$O$_4$) catalyst for liquid-phase aerobic oxidation of vanillyl alcohol to vanillin</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Experimental</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>2.2.2.1</td>
<td>Catalyst characterization</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Catalytic performance of Co$_3$O$_4$ nanoparticles</td>
</tr>
<tr>
<td>2.3</td>
<td>Mixed Co–Mn oxide catalysed selective oxidation of vanillyl alcohol to vanillin in base-free conditions</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Experimental</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Results and discussion</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Catalyst characterization</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Catalytic activity of MnCo-MO</td>
</tr>
<tr>
<td>2.4</td>
<td>Reduced graphene oxide composite with</td>
</tr>
</tbody>
</table>

v
redoxible MnCo-oxide for \(p \)-cresol oxidation

2.4.1 Experimental 158
2.4.2 Results and discussion 158

2.4.2.1 Catalyst characterization 158
2.4.3 Catalytic activity of r-GO-MnCoO 166

2.5 Manganese oxide catalyst for veratryl alcohol oxidation

2.5.1 Experimental 171
2.5.2 Results and discussion 171

2.5.2.1 Catalyst characterization 171
2.5.3 Activity measurement 176

2.6 Conclusions 179

2.7 References 181

<table>
<thead>
<tr>
<th>Chapter 3</th>
<th>Summary and conclusions</th>
<th>186-187</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>List of publications</td>
<td>188-190</td>
</tr>
</tbody>
</table>