List of Tables

2.1 Units' data for the (15 units) test case with load 2650 MW (considering valve point loadings) .. 32

2.2 Statistical test results of 50 runs with different initial solutions (with cost curves considering valve point loading effect) for 15 units test case .. 32

2.3 Units' data for the (40 units) test case with load 10500 MW (considering valve point loadings) ... 37

2.4 Statistical test results of 50 runs with different initial solutions (with cost curves considering valve point loading effect) for 40 units test case .. 40

2.5 Average Solution times of different algorithms for 40 units test case 40

2.6 Statistical test results of 50 runs with different initial solutions (with cost curves considering valve point loading effect) for 15 units test case .. 45

2.7 Average Solution times with different algorithms for 15 units test case .. 45

4.1 Units' output bounds including fuel co-efficients of \(j^{th} \) generator having fuel function \(a_j + b_j p_j + c_j p_j^2 \) (without valve point loadings) for 15 units test case. ... 83

4.2 Table shows co-efficients for \(SO_2 \) emission of \(j^{th} \) generator for emission function \(c_0 + c_1 P_j + c_2 p_j^3 \) for 15 units test case. 84

4.3 Table shows co-efficients of \(NO_x \) emission of \(j^{th} \) generator for emission function \(c_0 + c_1 P_j + c_2 p_j^3 \) for 15 units test case. 84

4.4 Table shows output of generators during min cost, min emission for 15 units test case (for total 3250MW generation). 86
4.5 Units' output bounds including fuel co-efficients of \(j^{th} \) units having fuel-function \(a_j + b_j P_j + c_j P_j^2 + |c_j \sin(f_j(P_j - P_j^{\text{min}} - P_j))| \) (with valve point loadings) for 40 units test case.

4.6 Table shows co-efficients for \(SO_2 \) emission of \(j^{th} \) generator for emission function \(c_0 + c_1 P_j + c_2 P_j^3 \) for 40 units test case.

4.7 Table shows co-efficients of \(NO_x \) emission of \(j^{th} \) generator for emission function \(c_0 + c_1 P_j + c_2 P_j^3 \) for 40 units test case.

4.8 Table shows output of generators during min cost, min emission for 40 units test case (for total 6050MW generation).

5.1 Table shows output of generators during min cost, min emission for 15 units test case (for total 3250MW generation).

5.2 Table shows output of generators during min cost, min emission for 40 units test case (for total 6050MW generation).

5.3 Table shows the results obtained by modified NSDE and by modified NSGA-II during min cost, min emission for 40 units (6050MW) test case.