List of Figures

1 Figure 1.1: Structure of the heart, and course of blood flow through the heart chambers and heart valves

2 Figure 1.2: A scanning electron microscope (SEM) image of a normal red blood cell, a platelet, and a white blood cell

3 Figure 1.3: Catheter with its various components

4 Figure 2.1: Schematic diagram of a catheterised tapered artery with stenosis

5 Figure 2.2: Variation of axial velocity with radial distance for different axial distances, slip velocities and for $\phi = 1^0$, $\delta_s = 1/2$

6 Figure 2.3: Variation of axial velocity with radial distance for different axial distances, tapering angles and for $\bar{U}_s = 0.05$, $\bar{\delta}_s = 1/2$

7 Figure 2.4: Variation of axial velocity with radial distance for different axial distances, stenosis sizes and for $\phi = 1^0$, $\bar{U}_s = 0.05$

8 Figure 2.5: Variation of axial velocity with radial distance for different axial distances, stenosis sizes and for $\phi = 1^0$, $\bar{\delta}_s = 1/2$

9 Figure 2.6: Variation of axial velocity with radial distance for different axial distances, tapering angles and for $\bar{U}_s = 0.05$, $\bar{\delta}_t = 1/2$

10 Figure 2.7: Variation of axial velocity with radial distance for different axial distances, stenosis sizes and for $\phi = 1^0$, $\bar{U}_s = 0.05$

11 Figure 2.8: Variation of axial velocity with radial distance at the throat of the stenosis for $\phi = 1^0$, $\bar{U}_s = 0.05$

12 Figure 2.9: Variation of axial velocity with radial distance for different axial distances, tapering angles and for $\bar{U}_s = 0.05$, $\bar{\delta}_t = 1/2$

13 Figure 2.10: Variation of axial velocity with radial distance for different axial distances, stenosis sizes and for $\phi = 1^0$, $\bar{U}_s = 0.05$

14 Figure 2.11: Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_s = 1/2$
15 **Figure 2.12:** Variation of flow rate against axial distance for different tapering angles and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

16 **Figure 2.13:** Variation of flow rate against axial distance for different stenosis sizes and for $\bar{u}_i = 0.05$, $\phi = 1^0$

17 **Figure 2.14:** Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$

18 **Figure 2.15:** Variation of flow rate against axial distance for different tapering angles and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

19 **Figure 2.16:** Variation of flow rate against axial distance for different stenosis sizes and for $\bar{u}_i = 0.05$, $\phi = 1^0$

20 **Figure 2.17:** Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$

21 **Figure 2.18:** Variation of flow rate against axial distance for different tapering angles and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

22 **Figure 2.19:** Variation of flow rate against axial distance for different stenosis sizes and for $\bar{u}_i = 0.05$, $\phi = 1^0$

23 **Figure 2.20:** Variation of wall shear stress against axial distances for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$

24 **Figure 2.21:** Variation of wall shear stress against axial distance for different tapering angles and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

25 **Figure 2.22:** Variation of wall shear stress against axial distance for different sizes of stenosis and for $\bar{u}_i = 0.05$, $\phi = 1^0$

26 **Figure 2.23:** Variation of wall shear stress against axial distances for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$

27 **Figure 2.24:** Variation of wall shear stress against axial distance for different tapering angles and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

28 **Figure 2.25:** Variation of wall shear stress against axial distance for different sizes of stenosis and for $\bar{u}_i = 0.05$, $\phi = 1^0$

29 **Figure 2.26:** Variation of wall shear stress against axial distances for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$
30 Figure 2.27: Variation of Wall shear stress against axial distance for different tapering angles and for \(\overline{u} = 0.05 \), \(\overline{v} = 0.05 \), \(\delta = 1/2 \)

31 Figure 2.28: Variation of Wall shear stress against axial distance for different sizes of stenosis and for \(\overline{u} = 0.05 \), \(\overline{v} = 0.05 \), \(\phi = 1^\circ \)

32 Figure 2.29: Variation of apparent viscosity against axial distance for different slip velocities and for different tapering angles

33 Figure 2.30: Variation of apparent viscosity against axial distance for different slip velocities and for different tapering angles

34 Figure 2.31: Variation of apparent viscosity against axial distance for different slip velocities for \(\phi = 1^\circ \) and \(\delta = 1/2 \)

35 Figure 2.32: Variation of apparent viscosity against axial distance for different tapering angles and for \(\delta = 1/2 \), \(\overline{v} = 0.05 \)

36 Figure 2.33: Variation of apparent viscosity against axial distance for different sizes of stenosis and for \(\overline{v} = 0.05 \), \(\phi = 1^\circ \)

37 Figure 2.34: Variation of apparent viscosity against axial distance for different slip velocities for \(\phi = 1^\circ \) and \(\delta = 1/2 \)

38 Figure 2.35: Variation of apparent viscosity against axial distance for different tapering angles and for \(\delta = 1/2 \), \(\overline{u} = 0.05 \), \(\overline{v} = 0.05 \)

39 Figure 2.36: Variation of apparent viscosity against axial distance for different sizes of stenosis and for \(\overline{u} = 0.05 \), \(\overline{v} = 0.05 \), \(\phi = 1^\circ \)

40 Figure 3.1: Variation of axial velocity with radial distance at the peak of a stenosis for different values of \(n \) and \(\overline{u} \), and for \(\phi = 1^\circ \), \(\overline{\delta} = 0.5 \)

41 Figure 3.2: Variation of axial velocity with radial distance at the peak of a stenosis for different values of \(n \) and \(\overline{u} \), and for \(\phi = 1^\circ \), \(\overline{u} = 0.01 \)

42 Figure 3.3: Variation of axial velocity with radial distance at various axial distances for different values of \(\phi \) with \(n = 0.75, \overline{\delta} = 0.5 \) and \(\overline{u} = 0.01 \)

43 Figure 3.4: Variation of axial velocity with radial distance at the peak of a stenosis for different values of \(n \) and \(\overline{v} \), and for \(\phi = 1^\circ \), \(\overline{\delta} = 0.5 \)
Figure 3.5: Variation of axial velocity with radial distance at the peak of a stenosis for different values of n and δ_1 and for $\phi = 1^\circ$, $\nu_i = 0.01$

Figure 3.6: Variation of axial velocity with radial distance at various axial distances for different values of ϕ with $n=0.75, \delta_i = 0.5$ and $\nu_i = 0.01$

Figure 3.7: Variation of axial velocity with radial distance at the peak of a stenosis for different values of δ_i and ν_i and for $\phi = 1^\circ$, $\delta_i = 0.5$, $n=0.75$

Figure 3.8: Variation of axial velocity with radial distance at various axial distances for different values of ϕ with $n=0.75, \delta_i = 0.5$

Figure 3.9: Variation of axial velocity with radial distance at various axial distances for different values of ν_i and for $\phi = 1^\circ$, $\delta_i = 0.5$, $\nu_i = 0.01$ and $n=0.75$

Figure 3.10: Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^\circ$, $\delta_i = 1/2$, $n=0.75$

Figure 3.11: Variation of flow rate against axial distance for different sizes of stenosis and for $\phi = 1^\circ$, $\delta_i = 0.05$, $n=0.75$

Figure 3.12: Variation of flow rate against axial distance for different tapering angles and for $\delta_i = 0.05$, $\delta_i = 1/2$, $n=0.75$

Figure 3.13: Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^\circ$, $\delta_i = 1/2$, $n=0.75$

Figure 3.14: Variation of flow rate against axial distance for different sizes of stenosis and for $\phi = 1^\circ$, $\nu_i = 0.05$, $n=0.75$

Figure 3.15: Variation of flow rate against axial distance for different tapering angles and for $\nu_i = 0.05$, $\delta_i = 1/2$, $n=0.75$

Figure 3.16: Variation of flow rate against axial distance for different slip velocities and for $\phi = 1^\circ$, $\delta_i = 1/2$, $n=0.75$

Figure 3.17: Variation of flow rate against axial distance for different sizes of stenosis and for $\phi = 1^\circ$, $\nu_i = 0.05$, $\nu_i = 0.05$, $n=0.75$
57 **Figure 3.18:** Variation of flow rate against axial distance for different tapering angles and for $\bar{v}_i = 0.05$, $\bar{u}_i = 0.05$, $\delta_i = 1/2$, $n=0.75$

58 **Figure 3.19:** Variation of flow rate against axial distance for different values of n and for $\bar{v}_i = 0.05$, $\bar{u}_i = 0.05$, $\delta_i = 1/2$

59 **Figure 3.20:** Variation of wall shear stress against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$, $n=0.75$

60 **Figure 3.21:** Variation of wall shear stress against axial distance for different sizes of stenosis and for $\phi = 1^0$, $\bar{u}_i = 0.05$, $n=0.75$

61 **Figure 3.22:** Variation of wall shear stress against axial distance for different values of n and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$

62 **Figure 3.23:** Variation of wall shear stress against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$, $n=0.75$

63 **Figure 3.24:** Variation of wall shear stress against axial distance for different values of tapering angle and for $\bar{u}_i = 0.05$, $\delta_i = 1/2$, $n=0.75$

64 **Figure 3.25:** Variation of wall shear stress against axial distance for different values of n and for $\bar{v}_i = 0.05$, $\delta_i = 1/2$

65 **Figure 3.26:** Variation of wall shear stress against axial distance for different slip velocities and for $\phi = 1^0$, $\delta_i = 1/2$, $n=0.75$

66 **Figure 3.27:** Variation of wall shear stress against axial distance for different sizes of stenosis and for $\phi = 1^0$, $\bar{u}_i = 0.05$, $\bar{v}_i = 0.05$, $n=0.75$

67 **Figure 3.28:** Variation of wall shear stress against axial distance for different values of n and for $\bar{u}_i = 0.05$, $\bar{v}_i = 0.05$, $\delta_i = 1/2$, $n=0.75$

68 **Figure 3.29:** Variation of apparent viscosity against axial distance for different values of ϕ and \bar{u}_i and for $\bar{\delta}_i = 0.5$, $n=0.75$

69 **Figure 3.30:** Variation of apparent viscosity against axial distance for different values of $\bar{\delta}_i$, \bar{u}_i and for $n = 0.75$, $\phi = 1^0$

70 **Figure 3.31:** Variation of apparent viscosity against axial distance for different values of $\bar{\delta}_i$, \bar{v}_i and for $n = 0.75$, $\phi = 1^0$

71 **Figure 3.32:** Variation of apparent viscosity against axial distance for different values of \bar{v}_i and for $n = 0.75$, $\phi = 1^0$, $\bar{\delta}_i = 0.5$
Figure 3.33: Variation of apparent viscosity against axial distance for different values of \(\phi \) and for \(n = 0.75, \delta = 0.5 \)

Figure 3.34: Variation of apparent viscosity against axial distance for different values of \(\phi \), and for \(n = 0.75, \delta = 0.5, \bar{u}, \bar{v} = 0.05 \)

Figure 3.35: Variation of apparent viscosity against axial distance for different values of \(\bar{u}, \bar{v} \), and for \(n = 0.75, \delta = 0.5 \)

Figure 3.36: Variation of apparent viscosity against axial distance for different values of \(n \) and for \(\bar{u} = 0.05, \bar{v} = 0.05, \phi = 1^\circ \)

Figure 4.1: Schematic diagram of a catheterised uniform artery with stenosis

Figure 4.2: Variation of axial velocity against radial distance for different axial locations, different values of \(\bar{u} \), and for \(\delta = 0.5 \)

Figure 4.3: Variation of axial velocity against radial distance for different axial locations, different values of \(\delta \), and for \(\bar{u} = 0.05 \)

Figure 4.4: Variation of flow rate with axial distance for different values of \(\bar{u} \) and for \(\delta = 0.5 \)

Figure 4.5: Variation of flow rate with axial distance for different values of \(\delta \), and for \(\bar{u} = 0.05 \)

Figure 4.6: Variation of wall shear stress against axial distance for different values of \(\bar{u} \), and for \(\delta = 0.5 \)

Figure 4.7: Variation of wall shear stress against axial distance for different values of \(\delta \), and for \(\bar{u} = 0.05 \)

Figure 4.8: Variation of shear stress at interface against axial distance for different values of \(\bar{u} \), and for \(\delta = 0.5 \)

Figure 4.9: Variation of shear stress at interface against axial distance for different values of \(\delta \), and for \(\bar{u} = 0.05 \)

Figure 4.10: Comparison of apparent viscosity against axial distance for different values of \(\bar{u} \) and for \(\delta = 0.5 \)

Figure 4.11: Comparison of apparent viscosity against axial distance for different values of \(\delta \), and for \(\bar{u} = 0.05 \)
87 **Figure 5.1:** Schematic diagram of an artery with stenosis

88 **Figure 5.2:** Variation of axial velocity with radial distance at $z=0$ for different values of u_s and B with $e=1$ and $t=1$

89 **Figure 5.3:** Variation of axial velocity with radial distance at $z=0$ for different values of time and height of stenosis with $B=1$, $e=1$, $u_s=0.05$

90 **Figure 5.4:** Variation of Axial velocity with tube radius at different axial distances for values of u_s with $e=1$, $B=1$ and $t=1$

91 **Figure 5.5:** Variation of Flow-rate with axial distance for different values of u_s with $e=1$, $B=1$ and $t=1$

92 **Figure 5.6:** Variation of Flow rate with axial distance Variation of Flow-rate with axial distance for different values of B with $e=1$, $u_s=0.05$ and $t=1$

93 **Figure 5.7:** Variation of flow-rate with pressure gradient for different values of B, u_s and δ_s with $t=1$

94 **Figure 5.8:** Variation of wall shear stress with time for different values of B with $e=1$ and $\delta_s=0.2$

95 **Figure 5.9:** Variation of Apparent viscosity with axial distance for different values of u_s with $B=1$, $e=1$ and $\delta_s=0.2$

96 **Figure 5.10:** Variation of Apparent viscosity with axial distance for different values of B with $u_s=0.05$, $e=1$ and $\delta_s=0.2$

97 **Figure 6.1:** Schematic diagram of an artery with stenosis

100 **Figure 6.2:** Variation of axial velocity with radial distance with $t=1$ radian, $e=1$, $z=0$, $\phi=0.2$

101 **Figure 6.3:** Variation of axial velocity with radial distance for $B=1$, $e=1$, $z=0$

102 **Figure 6.4:** Variation of Axial velocity with tube radius at different axial distances for values of u_s with $e=1$, $B=1$ and $t=1$

103 **Figure 6.5:** Variation of Flow-rate with yield stress for $t=1$ radian, $e=1$, $z=0$, $\phi=0.2$

104 **Figure 6.6:** Variation of Flow-rate with axial distance for different values of u_s with $e=1$, $B=1$ and $t=1$
105 **Figure 6.7:** Variation of Flow rate with axial distance for $t = 1$ radian, $e = 1$, $u_s = 0.05$

106 **Figure 6.8:** Variation of Wall shear stress with pressure gradient with $t = 1$, $u_s = 0.05$

107 **Figure 6.9:** Variation of Wall shear stress with time with $e = 0.3$, $z = 0$

108 **Figure 6.10:** Variation of Apparent viscosity with axial distance for different values of u_s with $B = 1$, $e = 1$

109 **Figure 6.11:** Variation of Apparent viscosity with axial distance for different values of B with $u_s = 0.05$, $e = 1$ and $\delta_s = 0.2$

110 **Figure 6.12:** Variation of Plug core velocity with size of stenosis for different values of B and θ with $e = 1$, $t = 1$

111 **Figure 6.13:** Variation of Plug core radius with axial distance for different values of δ_s with $e = 1$, $B = 1$, $t = 1$