CONTENTS

ABSTRACT
LIST OF FIGURES
LIST OF TABLES
LIST OF ACRONYMS

CHAPTER 1: RELIABILITY CONCEPTS

1.0 INTRODUCTION
1.1 PROBABILITY FUNCTIONS
1.2 AVAILABILITY AND UNAVAILABILITY
1.3 FAILURE CATEGORIES
1.4 THE ROLE OF RELIABILITY PREDICTION (FAILURE RATES)
1.5 COMPARISON OF THE MEASURES OF CENTRAL TENDENCY
1.6 FAILURE FREQUENCIES
1.7 REPAIRABLE AND NON-REPAIRABLE ITEMS
1.8 FAILURE PATTERNS
1.9 REDUNDANCY
1.10 PROBABILITY MODELS
1.11 RELIABILITY OF SYSTEMS
1.12 APPLICATION AREAS OF RELIABILITY

CHAPTER 2: POWER SYSTEM RELIABILITY

2.0 INTRODUCTION
2.1 DETERMINISTIC VERSUS PROBABILISTIC APPROACH
2.2 SYSTEM ADEQUACY VERSUS SYSTEM SECURITY
2.3 FUNCTIONAL ZONES AND HIERARCHICAL LEVELS
2.4 POWER SYSTEM DATA AVAILABILITY AND ITS IMPORTANCE IN FAILURE ASSESSMENT
2.5 EVALUATION METHODS
2.6 RELIABILITY COST
2.7 TRANSMISSION RELIABILITY ANALYSIS IN DEREGULATED UTILITY ENVIRONMENT
2.8 LITERATURE SURVEY
2.9 PROBLEM DEFINITION
CHAPTER 3: COMPONENT RELIABILITY

3.0 INTRODUCTION 46
3.1 FAILURES OF POWER TRANSFORMERS 48
3.2 FAILURES OF CIRCUIT BREAKERS (CBs) 49
3.3 FAILURES OF INSTRUMENT TRANSFORMERS 49
3.4 FAILURES OF SURGE ARRESTORS 50
(LIGHTNING ARRESTORS - LAs)
3.5 CASE STUDIES OF FAILURES OF POWER SYSTEM COMPONENTS 50
3.6 SUGGESTIONS FOR REDUCTION OF FAILURES 54
3.7 QUANTIFICATION OF THE IMPACT OF COMPONENT FAILURES 54

CHAPTER 4: TRANSMISSION LINE RELIABILITY

4.0 INTRODUCTION 62
4.1 PURPOSE OF DATA 66
4.2 OUTAGE DEFINITION AND TYPE OF OUTAGES 68
4.3 DATA ANALYSIS 68
4.4 TRANSMISSION LINE OUTAGE PREDICTION BASED ON REGRESSION METHOD 69
4.5 MARKOV MODEL BASED EHT TRANSMISSION SYSTEM RELIABILITY ASSESSMENT 71
4.6 RESULTS 74

CHAPTER 5: SUB-STATION RELIABILITY

5.0 INTRODUCTION 86
5.1 SUBSTATION RELIABILITY ASPECTS 87
5.2 FAILURE MODES AND EFFECTS EVALUATION 89
5.3 IMPORTANCE OF PROPOSED NEW EHT SUB-STATION INDEX 90
5.4 METHODOLOGY 91
5.5 BUS CONFIGURATIONS 92
5.6 RESULTS 103

CHAPTER 6: ANN BASED SHORT TERM LOAD FORECASTING

6.0 INTRODUCTION 104
6.1 ANALYSIS OF LOAD FORECASTING 106
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2 DIFFERENT MODELS OF LOAD FORECASTING</td>
<td>108</td>
</tr>
<tr>
<td>6.3 METHODS OF LOAD FORECASTING</td>
<td>109</td>
</tr>
<tr>
<td>6.4 INTRODUCTION TO NEURAL NETWORKS</td>
<td>110</td>
</tr>
<tr>
<td>6.5 HISTORY OF ARTIFICIAL NEURAL NETWORKS</td>
<td>112</td>
</tr>
<tr>
<td>6.6 BIOLOGICAL NEURON</td>
<td>113</td>
</tr>
<tr>
<td>6.7 THE ARTIFICIAL NEURON</td>
<td>114</td>
</tr>
<tr>
<td>6.8 MATHEMATICAL MODELING OF AN ARTIFICIAL NEURON</td>
<td>115</td>
</tr>
<tr>
<td>6.9 LEARNING PROCESS OF A NEURON</td>
<td>116</td>
</tr>
<tr>
<td>6.10 BUILDING OF ANNs</td>
<td>116</td>
</tr>
<tr>
<td>6.11 ANN ARCHITECTURE</td>
<td>119</td>
</tr>
<tr>
<td>6.12 TRAINING OF ANNs</td>
<td>120</td>
</tr>
<tr>
<td>6.13 CLASSIFICATION OF NEURAL NETWORKS</td>
<td>121</td>
</tr>
<tr>
<td>6.14 COMPUTATIONAL PROPERTIES OF ANNs</td>
<td>121</td>
</tr>
<tr>
<td>6.15 ELECTRICAL AND ELECTRONIC APPLICATIONS OF ANNs</td>
<td>122</td>
</tr>
<tr>
<td>6.16 BACK PROPAGATION ALGORITHM</td>
<td>123</td>
</tr>
<tr>
<td>6.17 COMPUTATION USING MATLAB TOOL BOX</td>
<td>128</td>
</tr>
<tr>
<td>6.18 RESULTS</td>
<td>136</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>141</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>147</td>
</tr>
<tr>
<td>LIST OF PUBLICATIONS</td>
<td>149</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>A-1</td>
</tr>
</tbody>
</table>