NOMENCLATURE

\(a \) cross sectional area of pipe, m\(^2\)
\(A_c \) area of greenhouse cover, m\(^2\)
\(A_d \) area of door, m\(^2\)
\(A_g \) area of greenhouse floor, m\(^2\)
\(A_h \) total area of ACCFHES, m\(^2\)
\(A_i \) area of \(i^{th} \) surface of greenhouse, m\(^2\)
\(A_p \) area of plant, m\(^2\)
\(A_v \) opening area of ventilator, m\(^2\)
\(c_a \) specific heat of air, J kg\(^{-1}\) °C\(^{-1}\)
\(C_c \) heat capacity of cold fluid, J °C\(^{-1}\)
\(c_f \) specific heat of fluid, J kg\(^{-1}\) °C\(^{-1}\)
\(C_h \) heat capacity of hot fluid, J °C\(^{-1}\)
\(c_p \) specific heat of plant, J kg\(^{-1}\) °C\(^{-1}\)
\(c_w \) specific heat of water, J kg\(^{-1}\) °C\(^{-1}\)
\(d \) diameter of pipe, m
\(d_j \) diameter of orifice, m
\(D \) average diameter of bed material, m
\(E \) effectiveness of ACCFHES, dimensionless
\(f \) coefficient of friction, dimensionless
\(F_c-a \) shape factor between the canopy cover and the sky
\(g \) acceleration due to gravity, m\(s^{-1}\)
\(h_a \) heat transfer coefficient from air to water, W m\(^{-2}\) °C\(^{-1}\)
\(h_b \) heat transfer coefficient between the greenhouse floor and the ground beneath, W/m\(^2\) °C
\(h_{cic} \) convective heat transfer coeff from inside air to canopy, W m\(^{-2}\) °C\(^{-1}\)
\(h_{coc} \) outside convective heat transfer coefficient, W m\(^{-2}\) °C\(^{-1}\)
\(h_d \) heat transfer coefficient from the greenhouse door to ambient air, W m\(^{-2}\) °C\(^{-1}\)
\(h_g \) radiative and convective heat transfer coefficient from greenhouse floor to room, W m\(^{-2}\) °C\(^{-1}\)
\(h_i \) total inside heat transfer coefficient, W m\(^{-2}\) °C\(^{-1}\)
\(h_o \) total outside heat transfer coefficient, W m\(^{-2}\) °C\(^{-1}\)
heat transfer coefficient between the plant and the enclosed air, $W m^{-2} °C^{-1}$

h_{pr}

total convective and evaporative heat transfer coefficient from plant to the enclosed air, $W m^{-2} °C^{-1}$

h_{go}

outside radiative heat transfer coefficient, $W m^{-2} °C^{-1}$

h_{gi}

inside radiative heat transfer coefficient, $W m^{-2} °C^{-1}$

h_t

overall heat transfer coefficient from room air to ambient air through canopy, $W m^{-2} °C^{-1}$

h_v

volumetric heat transfer coefficient, $W m^{-3} °C^{-1}$

h_w

heat transfer coefficient from water to air, $W m^{-2} °C^{-1}$

G

mass velocity $(4m_c/πD^2)$ kg s$^{-1}$m2

I_b

beam radiation on a horizontal surface, $W m^2$

I_b'

beam radiation on inclined surface, $W m^2$

I_d

diffuse radiation on horizontal surface, $W m^2$

I_{ext}

extra-terrestrial solar radiation, $W m^2$

I_g

global radiation on a horizontal surface, $W m^2$

I_t

total solar radiation on an inclined surface, $W m^2$

I_n

direct normal solar radiation, $W m^2$

I_{sc}

average value of solar constant, 1367 $W m^2$, I_I

incident solar radiation on greenhouse cover, $W m^2$

k_a

conductivity of air, $W m^{-1} °C^{-1}$

k_f

conductivity of fluid, $W m^{-1} °C^{-1}$

k_g

conductivity of ground, $W m^{-1} °C^{-1}$

K_i

thermal conductivity of the i^{th} layer of the ground, $W m^{-1} °C^{-1}$

l_f

length of the greenhouse passage, m

L

length of pipe, m

L_{ti}

thickness of the i^{th} layer of the ground, m

$LMTD$

logarithmic mean temperature difference, °C

m_a

mass flow rate of air, kg s$^{-1}$

m_b

mass of the bed $= V (1-\phi) \rho_b$

M_a

total mass of air, kg

M_p

total mass of plant, kg

m_r

mass of rock, kg

m_w

mass flow rate of water, kg s$^{-1}$
\(n \)
day of the year starting 1st January as 1.

\(n_i \)
refractive index of air (taken as 1)

\(n_2 \)
refractive index of cover material (taken as 1.37 for polyethylene)

\(N \)
number of air changes per hour

\(NTU \)
number of transfer units, \((=U_h A_h/C_{min})\), dimensionless

\(Nu \)
Nusselt number, dimensionless

\(Nu_a \)
Nusselt number for air, dimensionless

\(p \)
partial vapor pressure at saturation, \(\text{pa} \)

\(P \)
pumping power, \(\text{W} \)

\(Pr \)
Prandtl number, dimensionless

\(Pr_a \)
Prandtl number at mean air temperature \((= \mu c_a / k_a)\), dimensionless

\(P(T_p) \)
partial vapor pressure at plant temperature, \(\text{N/m}^2 \)

\(P(T_c) \)
partial vapor pressure at canopy temperature, \(\text{N/m}^2 \)

\(q_{co} \)
outside heat transfer due to convection, \(\text{W} \)

\(q_{ri} \)
inside radiative heat transfer, \(\text{W} \)

\(Q_p \)
thermal energy transfer from or to the system, \(\text{W} \)

\(r \)
reflection coefficient of ground (taken as 0.2)

\(R_0 \)
radius of heat exchanger pipe, \(\text{m} \)

\(R_i \)
regression coefficient

\(R_2 \)
regression coefficient

\(R_b \)
configuration factor for beam radiation, dimensionless

\(R_d \)
configuration factor for diffuse radiation, dimensionless

\(Re_a \)
Reynolds number for air \((= v_c d / \nu_a)\), dimensionless

\(R_r \)
configuration factor for reflected component, dimensionless

\(S \)
average heat flux conducted into the soil, \(\text{W} \)

\(S_t \)
total solar radiation falling on the greenhouse through each wall and roof, \(\text{W/m}^2 \)

\(t_{solar} \)
local solar time

\(T_1 \)
initial temperature of fluid, \(^\circ\text{C} \)

\(T_2 \)
final temperature of fluid, \(^\circ\text{C} \)

\(T_a \)
ambient air temperature, \(^\circ\text{C} \)

\(T_c \)
temperature of cover, constant temperature of soil around pipe \(^\circ\text{C} \)

\(T_{ci} \)
inlet temperature of cold fluid, \(^\circ\text{C} \)

\(T_{co} \)
outlet temperature of cold fluid, \(^\circ\text{C} \)
T_d delivery air temperature, °C
T_f temperature of fluid, °C
T_{ht} inlet temperature of hot fluid, °C
T_{ho} outlet temperature of hot fluid, °C
T_i inlet temperature of greenhouse air, °C
T_m mean temperature, °C
T_o outlet temperature of greenhouse air, °C
T_p plant temperature, °C
T_{po} initial temperature of plant, °C
T_r turbidity factor for different months
T_R greenhouse room air temperature, °C
T_{sa} sol-air temperature, °C
T_{sky} sky temperature, °C
$T_{j=0}$ temperature of greenhouse floor surface, °C
T_∞ temperature at larger depth, °C
TF transmission factor of greenhouse
U_h overall heat transfer coefficient of ACCFHES, W m$^{-2}$ °C$^{-1}$
U_t overall heat transfer coefficient of the greenhouse, W m$^{-2}$ °C$^{-1}$
v wind velocity, m s$^{-1}$
V volume of the bed, m3
V_0 rate of heat transfer due to infiltration, W
V_i rate of heat transfer due to ventilation, W
v_a velocity of air through pipe, m s$^{-1}$
V_{fa} volume flow rate of air, m3 s$^{-1}$
V_g total volume of greenhouse, m3
V_w volume of water stored, m3

Greek symbols

α absorptivity
α_g absorptivity of ground, dimensionless
α_p absorptivity of plant, dimensionless
α_s altitude angle of sun above the horizon in degrees.
β slope of the surface with horizontal plane in degrees, coefficient of thermal expansion, °K$^{-1}$
\(\gamma \)
- solar azimuth angle measured from south, relative humidity, decimal

\(\delta \)
- declination angle

\(\epsilon \)
- emissivity of the surface, void fraction of the bed

\(\epsilon_{\text{eff}} \)
- effective emissivity

\(\epsilon_c \)
- emissivity of canopy cover

\(\epsilon_f \)
- emissivity of floor

\(\epsilon_{\text{sky}} \)
- emissivity of sky

\(\theta_1 \)
- angle of incidence of sun ray with normal

\(\theta_2 \)
- angle of refraction of sun ray with normal

\(\theta_3 \)
- zenith angle of sun on inclined surface.

\(\theta_z \)
- zenith angle of sun on horizontal surface.

\(\mu_a \)
- dynamic viscosity of air, N-s m\(^{-2}\)

\(\mu_f \)
- dynamic viscosity of fluid, N-s m\(^{-2}\)

\(\nu_a \)
- kinematic viscosity of air at mean air temperature, m\(^{-2}\)s\(^{-1}\)

\(\rho \)
- density of the fluid, kg m\(^{-3}\)

\(\rho_a \)
- density of air, kg m\(^{-3}\)

\(\rho_b \)
- density of rocks, Kg/m\(^3\)

\(\sigma \)
- Stefan Boltsman constant, 5.67 \(\times \) 10\(^{-8}\), Wm\(^{-2}\)K\(^{-4}\)

\(\tau \)
- transmissivity of greenhouse cover, dimensionless

\(\tau_a \)
- absorption component of solar radiation

\(\tau_r \)
- average transmittance of perpendicular and parallel (non-equal) components

\(\phi \)
- north latitude of location

\(\omega \)
- hour angle in degrees which is equal to 15° times the number of hours from solar noon, positive from 12 noon to midnight.

\(\infty \)
- infinity (at larger depth)

\(\Delta P \)
- pressure drop through the pipe, cm.

\(\Delta T' \)
- difference in the greenhouse room and ambient temperature

Subscripts

- \(a \) air
- \(c \) cold fluid
- \(h \) hot fluid
- \(i \) inlet
- \(o \) outlet
R room air
w water
E east
W west
N north
S south
NR north roof
SR south roof