CONTENTS

NOMENCLATURE i-vi

SUMMARY vii-xii

CHAPTER WISE ABSTRACT xiii-xv

PUBLICATIONS xvi

CHAPTER 1

GENERAL INTRODUCTION 1-14

1.1 INTRODUCTION 2

1.2 GREENHOUSE APPLICATIONS 3

1.3 CLASSIFICATION OF GREENHOUSES 4

1.3.1 Classification on the Basis of Shape of Structure 4

1.3.2 Classification Based on Working Principles 7

1.3.3 Classification on the Basis of Extent of Cost 8

1.3.4 Classification Based on Climatic Conditions 9

1.4 TECHNOLOGIES FOR GREENHOUSE HEATING 11

1.5 TECHNOLOGIES FOR GREENHOUSE COOLING 11

1.6 TECHNOLOGY FOR GREENHOUSE IN COMPOSITE CLIMATES 12

1.7 SCOPE OF THE THESIS 12

CHAPTER 2

REVIEW OF GREENHOUSE THERMAL CONTROL TECHNOLOGIES AND APPLICATIONS: STATE-OF-THE-ART 15-60

2.1 INTRODUCTION 16

2.2 REVIEW OF EXISTING THERMAL CONTROL TECHNOLOGIES 16

2.2.1 Greenhouse Heating Systems 18

2.2.1.1 Water storage systems 18

2.2.1.2 Rock bed thermal storage systems 24

2.2.1.3 Phase change materials 29

2.2.1.4 Ground air collector 35

2.2.1.5 North wall 37

2.2.1.6 Movable insulation/Thermal screens 38

2.2.2 Greenhouse Cooling Systems 41

2.2.2.1 Natural ventilation 41
2.2.2.1 Forced ventilation 44
2.2.2.3 Shading 45
2.2.2.4 Fan and pad evaporative cooling 47
2.2.2.5 Misting/Fogging 50
2.2.3 Composite System 50
 2.2.3.1 Earth-to-air heat exchanger system for greenhouse heating 51
 2.2.3.2 Earth-to-air heat exchanger system for greenhouse cooling 55
2.3 LIMITATIONS OF EXISTING THERMAL CONTROL TECHNOLOGIES 55
 2.3.1 Heating Technologies 55
 2.3.2 Cooling Technologies 56
 2.3.3 Composite System 57
2.4 FORMULATION OF THE PROBLEM 58
2.5 ADVANTAGES OF AQUIFER COUPLED CAVITY FLOW HEAT EXCHANGER SYSTEM 59
2.6 OBJECTIVES OF THE STUDY 59

CHAPTER 3
MATHEMATICAL MODELING OF SOLAR RADIATION AVAILABILITY ON A GREENHOUSE FOR COMPOSITE CLIMATIC REGIONS 61-88
3.1 INTRODUCTION 62
3.2 ANALYTICAL APPROACH 63
 2.2.1 Hourly Solar Radiation on an Inclined Surface 63
3.3 SOLAR RADIATION ON GREENHOUSE COVER 66
3.4 SOLAR RADIATION TRANSMISSION INSIDE THE GREENHOUSE 67
3.5 RESULTS AND DISCUSSION 69
 3.5.1 Model validation 69
 3.5.2 Greenhouse Orientation 69
 3.5.3 Greenhouse Shape 73
 3.5.4 Transmission Factor for Greenhouse 74
 3.5.4.1 Solar radiation transmittance 74
 3.5.4.2 Transmission factor variation with shape and orientation of greenhouse 78
3.6 CONCLUSIONS 87
CHAPTER 4
OVERALL HEAT TRANSFER COEFFICIENT OF GREENHOUSE

4.1 INTRODUCTION 90

4.2 OUTSIDE HEAT TRANSFER 90
 4.2.1 Outside Radiation Heat Transfer Coefficient 90
 4.2.2 Outside Convective Heat Transfer Coefficient 91
 4.2.3 Conductive Heat Transfer Coefficient 91

4.3 INSIDE HEAT TRANSFER 92
 4.3.1 Inside Radiation Heat Transfer Coefficient 92
 4.3.2 Inside Convective Heat Transfer Coefficient 92
 4.3.3 Inside Evaporative Heat Transfer Coefficient 92

4.4 OVERALL HEAT LOSS COEFFICIENT 93
 4.4.1 Total Heat Loss from the Greenhouse 93

4.5 INFILTRATION / VENTILATION 93

CHAPTER 5
THERMAL MODELING OF GREENHOUSE INTEGRATED TO ACCFHES & SIMULATION STUDIES

5.1 INTRODUCTION 97

5.2 WORKING PRINCIPLE OF GREENHOUSE INTEGRATED TO ACCFHES 97

5.3 THERMAL ANALYSIS 98
 5.3.1 Assumptions 98
 5.3.2 Energy Balance Equations 98
 5.3.2.1 Greenhouse plants 98
 5.3.2.2 Greenhouse floor 99
 5.3.2.3 Greenhouse enclosed air 99

5.4 THERMAL ENERGY GAIN INSIDE THE GREENHOUSE 101

5.5 DATA COLLECTION OF CLIMATIC AND PLANT PARAMETERS 103

5.6 NUMERICAL COMPUTATIONS AND MODEL VALIDATION 104
 5.6.1 Design Data 104
 5.6.2 Climatic Parameters 104
 5.6.3 Experimental Validation 108

5.7 SIMULATION STUDIES 113
 5.7.1 Effect of Mass of Plant 113
5.7.2 Effect of Area of Plant
5.7.3 Effect of Area of ACCFHES
5.7.4 Effect of Air Mass Flow Rate

5.8 CONCLUSIONS

CHAPTER 6
DESIGN AND PERFORMANCE EVALUATION OF AQUIFER COUPLED CAVITY FLOW HEAT EXCHANGER SYSTEM

6.1 INTRODUCTION

6.2 DESIGN METHODOLOGY OF ACCFHES

6.3 CONSTRUCTIONAL DETAILS OF GREENHOUSE AND ACCFHES

6.3.1 Mixing of Water with Circulating Air

6.4 RESULTS AND DISCUSSION

6.4.1 Area requirements of ACCFHES

6.4.2 Power Requirements of ACCFHES

6.4.3 Comparison of ACCFHES and EAHES

6.4.3.1 Area requirement

6.4.3.2 Power requirement

6.4.4 Experimental Performance of ACCFHES in Heating Mode

6.4.5 Experimental Performance of ACCFHES in Cooling Mode

6.4.6 Comparison of Other Climatic Parameters

6.4.6.1 Plant temperature

6.4.6.2 Soil temperature

6.4.6.3 Relative humidity

6.4.6.4 Light intensity

6.4.6.5 Solar radiation

6.5 CONCLUSIONS

CHAPTER 7
FIELD EVALUATION OF ACCFHES & STATISTICAL ANALYSIS

7.1 INTRODUCTION

7.2 AGRONOMICAL PRACTICES

7.2.1 Nursery Raising

7.2.2 Transplanting and Crop Management

7.3 GERMINATION AND GROWTH