NOMENCLATURE

a height or depth
b width
C cost of material of round stock, height of conical nose
C_4 cost of powder material
C_d cost of the die (only the part being replaced)
C_m(i) maintenance cost for method (i), i = 1,...,5
C_p(i) power cost for method (i), i = 1,...,5
C_r(i) waste recovery cost for method(i), (i) i = 1,...,5
C_{r'}(i) capital recovery cost for method (i), i = 1,...,5
C_s cost of scrap material
C_t(i) total cost for method (i), i = 1,...,5
d diameter of cylindrical portion of punch
D diameter of disc
F flat to flat distance
F_1 estimated salvage value
H number of working hours per year
i interest rate
J upper bound energy consumption, externally applied power
l length of the round stock for producing one nut, length of punch
L combined length of the piece unutilised on both ends of a single drawn bar stock
L_f one full length of the drawn stock
L_{r'}(i) labour cost for (i) type of labour
L_{r'}(ii) labour cost for (ii) type of labour and so on
\[t_p \] mean time between two consecutive die replacements
\[T_2 \] thickness
\[T_1 \] tariff
\[T \] thickness
\[T_{l} \] loading time
\[T_m \] machinery time
\[T_u \] unloading time
\[u \] punch velocity
\[U_{i,s} \] components of velocity vectors
\[U_{\theta} \] tangential components of the velocity
\[U_{\phi}, U_{\psi} \] circumferential velocity components
\[U_r \] radial component of the velocity
\[U_y \] axial component of the velocity
\[V \] volume, velocity
\[v \] velocity discontinuity
\[V_{\text{flash}} \] flash volume
\[w \] connected load
\[\dot{W} \] power (work per unit time)
\[\dot{W}_b \] power associated with back pull or external tractions
\[\dot{W}_d \] internal power of deformation
\[\dot{W}_{f_1}(k) \] frictional power dissipation in different regions for different shaped punches
\[\dot{W}_e \] total frictional work dissipation rate
\[\dot{W}_p \] total plastic work dissipation rate
\[\dot{W}_{p1}, \dot{W}_{p2}, \dot{W}_{p3} \] plastic work dissipation rate in different regions
\[\dot{W}_f \] frictional power dissipation in different regions
plastic work dissipation rate in different regions for different shaped punches

$W_{pi(k)}$ or $\dot{W}_{pi(k)}$

components of coordinate system

x, y, z

axial coordinate of cylindrical coordinate system

α

angle, slope

ε

strain

$\dot{\varepsilon}$

strain rate

θ

axis in cylindrical coordinate system, angle

ϕ, ψ

angles

σ_0

yield strength of material in compression

τ

year stress

ρ

density

Superscripts

max

maximum

min

minimum

i

$1, 2, 3, \ldots$

k

$1, 2, 3, \ldots$

ij

denoting component of a tensor

d

differential or infinitesimal value

δ

very small portion

Δ

difference

θ

origin

f

function, friction