TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE</td>
<td>i</td>
</tr>
<tr>
<td>DEDICATION</td>
<td>ii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>vi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>ix</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>xv</td>
</tr>
</tbody>
</table>

CHAPTER 1 INTRODUCTION

1.1 Introduction

1.2 Quality Definitions

1.3 Statistical Process Control

1.4 Control charts

1.4.1 Role of Control Charts in process monitoring

1.4.1.1 Control charts for monitoring the process means (averages)

1.4.1.1.1 \(\bar{X} \) Charts

1.4.1.1.2 Cumulative Sum (CUSUM) Control Charts

1.4.1.1.3 Exponentially Weighted Moving Average (EWMA) chart

1.4.1.1.4 Multivariate control charts for variables

1.4.1.1.4.1 Hotelling’s \(T^2 \) chart

1.4.1.1.4.2 Chi-square \((\chi^2) \) Chart

1.4.1.1.4.3 Multivariate EWMA chart

1.4.1.1.4.4 Multivariate cumulative sum (MCUSUM) chart
1.4.1.2 Control charts for monitoring process dispersion
1.4.1.2.1 Range (R) charts
1.4.1.2.2 Sigma or S charts
1.4.1.2.3 Moving Range (MR) control charts
1.4.1.2.4 CUSUM chart for monitoring process dispersion
1.4.1.2.5 EWMA chart for monitoring process dispersion
1.4.1.3 Combined control charts
1.4.1.4 Control charts for monitoring autocorrelated data
1.4.1.4.1 Minimax chart
1.5 Performance measures of a Control Charts
1.5.1 ARL for Shewhart \bar{X} chart
1.5.2 CUSUM chart
1.5.3 EWMA charts
1.5.4 Comparison of ARLs of Shewhart, CUSUM and EWMA charts
1.6 Motivation for new \bar{X} chart
1.6.1 Nature of signals
1.6.2 Kinds of signals
1.7 Need of new control chart
1.8 Outline of Thesis

Chapter 2 Literature Review 30-80
2.1 Introduction
2.2 Phase I
2.3 Classifications of control charts
2.4 Performance Measures for Control Charts
2.5 Controlling the process mean
2.5.1 The basic \bar{X} Chart
2.5.1.1 Run rules to increase efficiency
2.5.1.2 Variable Sample Size (VSS)
2.5.1.3 Variable sampling Interval (VSI) 40
2.5.1.4 Variable Sample Size and Sampling Intervals (VSSI) 41
2.5.2 CUSUM Charts 41
2.5.2.1 Procedure for maintaining CUSUM chart 41
2.5.2.2 Research on CUSUM Charts 42
2.5.2.2.1 Graphical techniques to decide the status of the process 43
2.5.2.2.2 Use of fast initial response (FIR) feature 43
2.5.2.2.3 Computational algorithms to find ARLs of CUSUM charts 44
2.5.2.2.4 Run length distribution 44
2.5.2.2.5 CUSUM charts for signalling varying location shifts 45
2.5.2.2.6 Consideration of sample size and sampling interval in a dynamic manner 45
2.5.3 Exponentially Weighted Moving Average (EWMA) Charts 46
2.5.3.1 When a point is to be considered out of control 46
2.5.3.2 Research on EWMA Charts 48
2.5.3.2.1 Effect of chart parameters on the performance of EWMA charts 49
2.5.3.2.2 One-sided and two sided EWMA charts 49
2.5.3.2.3 Consideration of sample size and sampling interval in a dynamic manner 50
2.5.3.2.4 EWMA chart for signalling varying location shifts 50
2.6 Controlling the process dispersion 51
2.6.1 Shewhart Range (R) and Sigma (S) charts 51
2.6.2 Moving range (MR) chart 52
2.6.3 CUSUM Range (R) charts 52
2.6.4 EWMA Range (R) charts 53
2.7 Joint \bar{X} and R chart 54
2.8 Combined control charts 54
2.9 Control charts based upon Non-normal distributions 55
2.10 Research on control charts for autocorrelated data 57
Chapter 5 Comparisons of \bar{X} Charts with literature 125-149

5.1 Introduction 126
5.2 Simulated results of new \bar{X} chart, using the strategy CSQ 126
5.3 Performance of new \bar{X} chart using the strategy ASM 127
5.4 Shewhart \bar{X} chart 129
5.5 Derman-Ross (D-R) Scheme and Klein's Scheme 131
5.5.1 Analysis of Results 133
5.6 Variable parameters (VP) \bar{X} charts 134
5.6.1 The Results of comparisons 138
5.7 Variable sample size (VSS) \bar{X} charts 139
5.7.1 Analysis of results 140
5.8 Conventional CUSUM schemes 141
5.9 CUSUM chart proposed by Reynolds et. al (1990) 143
5.10 Combined Shewhart-CUSUM scheme proposed by Lucas (1982) 144
5.11 Bissell's (one-sided CUSUM) scheme 145
5.12 Hawkins's CUSUM scheme 147
5.12.1 Hawkins's Example 1 147
5.12.2 Hawkins's Example2 148
5.12.3 Hawkins's Example 3 149
5.13 Discussion 149

Chapter 6 Design and comparisons of R (range) charts 150-177

6.1 Introduction 151
6.2 Theory of Shewhart R chart 151
6.3 New R chart 153
6.4 Calculations of warning and control limits for new R chart 155
6.5 Shewhart R chart 156
6.6 CUSUM, EWMA and Shewhart charts for variance 159
6.7 Variance (Shewhart) charts proposed by Chang and Gan (2004) 163
8.3 Comparison of economic design when process parameters vary from sample to sample 205
8.3.1 Sample calculations 205
8.5 Optimal sampling interval (h) for new \bar{X} chart 210
8.5.1 Sampling intervals for new \bar{X} chart for sample size of four 211
8.5.1.1 Sample calculations for optimal sampling interval (h) 211
8.6 Optimal sampling intervals for \bar{X} chart for various sample sizes and shifts in process average 217
8.7 Strategy to determine the sampling interval (h) for new \bar{X} chart 219
8.7.1 Sample calculations 220
8.8 Economic design of MEWMA chart proposed by Linderman and Love (2000) 221
8.8.1 Comparison of economic design of new \bar{X} chart with economic design of MEWMA chart proposed by Linderman and Love (2000) 221
8.9 Economic and economic-statistical design of \bar{X} chart proposed by McWilliams (1994) 223
8.9.1 Comparison of economic design of new \bar{X} chart with economic design of \bar{X} chart proposed by McWilliams (1994) 224
8.10 Discussion 225

Chapter 9 Conclusions 227-231
Scope for the Future Work 232-236
Appendix A 237-241
Appendix B 242-243
Appendix C 244-249
Appendix D 250-257
Research papers published/accepted and communicated 25-259
References 260-280
Reprints of research papers published in journals 281