Appendix A

Determination of average run length (ARL)
The performance of control chart can be measured in terms of average run length (ARL).
When process average shifts by amount, δ, the probability of signal, $P(\delta)$ depends upon
the width of warning and control limits (K, L respectively), sample size (n), number of
previous samples considered in history (H), and U^*, which is a parameter of chart,
defined in section 3.6.

The probability of signal, $P(\delta)$ can be expressed as:

$P(\delta) = f(n, K, L, H \text{ and } U^*)$

$P(\delta) = Pr_1 + Pr_2 \cdot Pr_3$, and $\text{ARL} = 1/ P(\delta)$

Where,

$Pr_1(\delta) = \text{Probability of a point falling beyond control limits}$

$= [1 - \{a (L - \delta) + a (-L - \delta)\}]$

$Pr_2(\delta) = \text{Probability of a point falling beyond warning limits and within control limits}$

$= \{a (L - K) + a (-L - K)\}$

$Pr_3(\delta) = \text{Probability that statistic, } U \text{ is greater than } U^*$

$= P(U > U^*)$

Statistic, U is defined as under:

$U = \sum_{i=1}^{H} \sum_{j=1}^{n} \left(\frac{(x_{ij} - \mu_0)}{\sigma_0}\right)^2$ \hspace{1cm} (1A)

Where,

$x_{ij} = \text{Individual measurement of product of } j \text{ and sample } i$

$\mu_0 = \text{Target process mean}$

$\sigma_0 = \text{target standard deviation}$

Suppose the process average has shifted by an amount of δ^*,

Let, $X_{ij}^* = X_{ij} - \delta^*$

or $X_{ij}^* = X_{ij} + \delta^*$

Statistic, U, as defined in Equation 1A may be written as:
The probability, $Pr_3(\delta)$ may be expressed as,

$$Pr_3(\delta) = P[U > U']$$

There will be $v(n \times H)$ terms in Equation 2A. These may be stored as elements of a single one dimensional array comprising of v terms, Equation 2A may be expressed as:

$$P[U > U'] = P \left[\sum_{d=1}^{H} \sum_{j=1}^{n} \left(\frac{X_{ij} + \delta - \mu_0}{\sigma'} \right)^2 > U' \right] \quad \text{(2A)}$$

The first term of equation (4A) is equal to chi-square statistic, U and last term is negligible, Equation 4A reduces to:

$$P[U > U'] = P \left[\sum_{d=1}^{v} \left\{ \left(\frac{X_{i} - \mu_0}{\sigma'} \right)^2 + \delta^2 + \frac{2\delta}{\sigma'} (X_i - \mu_0) \right\} > U' \right]$$

$$= P \left[\sum_{d=1}^{v} \left\{ \left(\frac{X_{i} - \mu_0}{\sigma'} \right)^2 + \delta^2 + \frac{2\delta}{\sigma'} (X_i - \mu_0) \right\} > U' \right]$$

The probability, $Pr_3(\delta)$ may be expressed as,

$$Pr_3(\delta) = P[U > U']$$

$$P[U > U'] = P \left[\left\{ U + v \delta^2 \right\} > U' \right]$$

$$P[U > U'] = P \left[\left\{ U + v \delta^2 \right\} > U' \right]$$
Here, δ has been measured in absolute units. For a process, normally distributed with mean; zero and standard deviation; one, the sample mean for sample size of n will have the following distribution:

- Mean = 0.0,
- Standard deviation = $1/\sqrt{n}$

If δ is expressed in units of sample standard deviation,

$$\delta = \delta \times \sqrt{n}$$

Where,

- $\delta = \text{Absolute shift in process mean}$
- $\delta = \text{Shift in terms of sample standard deviation (}\sigma\text{)}$

Substituting for δ in Equation 5A,

$$P[U > U^*] = P \left[U > U^* - \sqrt{\frac{U^2}{n}} \right]$$

The following examples illustrate how ARL is calculated for the proposed \bar{X} chart.

Example 1

Procedure for finding ARL for shift in process average (δ) of 0.8 is given below with the following conditions:

- Sample size (n) = 4,
- Target mean (μ_0) = 110.0,
- Target standard deviation (σ_0) = 3.0,
- Sample standard deviation (σ) = $\sigma_0/\sqrt{n} = 1.5$
- Width of warning limits (K) = 2.2,
- Width of control limits (L) = 3.2,
- History (H) = 4
- Confidence level = 0.05
- $U^* = 26.3$ (at degree of freedom, $v = n \times H = 16$)
- Upper control limit (UCL) = 114.8
- Lower control limit (LCL) = 105.2
Upper warning limit (UWL) = 113.3
Lower warning limit (LWL) = 106.7

\[P_{1}(\delta) = \text{Probability of a point falling beyond control limits} \]
\[= [1 - \{ \text{NORMSDIST}((UCL - z)/\sigma) + \text{NORMSDIST}((LCL - z)/\sigma) \}] \]
\[= [1 - \{ \text{NORMSDIST}((114.8 - 111.2)/1.5) + \text{NORMSDIST}((105.2 - 111.2)/1.5) \}] \]
\[P_{1}(\delta) = 0.0082 \]

\[P_{2}(\delta) = \text{Probability of a point falling beyond warning limits and within control limits} \]
\[= [\{ \text{NORMSDIST}((UCL-z)/\sigma) - \text{NORMSDIST}((UWL-z)/\sigma) \} \]
\[+ \{ \text{NORMSDIST}((LCL-z)/\sigma) + \text{NORMSDIST}((LWL-z)/\sigma) \} \]
\[= [\{ \text{NORMSDIST}((114.8 - 111.2)/1.5) - \text{NORMSDIST}((113.3 - 111.2)/1.5) \}
\[+ \{ \text{NORMSDIST}((105.2 - 111.2)/1.5) + \text{NORMSDIST}((106.7 - 111.2)/1.5) \} \]
\[= 0.0738 \]

\[P_{3}(\delta) = \text{Probability that statistic, U is greater than } U^* \]
\[= P(U > U^*) \]
\[= P\left\{ U > U^* - v\delta^2/n \right\} \]
\[= \text{CHIDIST}(26.3 - 16*1*1/4, 16) \]
\[= 0.0953 \]

The probability of signal \(P(\delta) = P_{1}(\delta) + P_{2}(\delta) \cdot P_{3}(\delta) \)
\[= 0.0082 + 0.0738 \cdot 0.0953 \]
\[= 0.0153 \]

Average run length (ARL) = \(1/P(\delta) \)
\[= 65.48 \]

Example 2
Procedure for finding ARL for shift in process average (\(\delta \)) of one is given below with the following conditions:
Sample size \((n) = 4, \)
Target mean \((\mu_0) = 0.0, \)
Target standard deviation \((\sigma_0) = 1.0, \)
Sample standard deviation \(\sigma = \sigma_0 / \sqrt{n} = 1.0 \)
Width of warning limits (K) = 2.2,
Width of control limits (L) = 3.2,
History (H) = 4
Confidence level = 0.05
\(U^* = 26.3 \) (at degree of freedom, \(v = n \times H = 16 \))
Upper control limit (UCL) = 3.2
Lower control limit (LCL) = -3.2
Upper warning limit (UWL) = 2.2
Lower warning limit (LWL) = -2.2

\(\text{Pr}_1(\delta) = \) Probability of a point falling beyond control limits
\[\text{Pr}_1(\delta) = [1 - \text{NORMSDIST} ((UCL - z)/\sigma) + \text{NORMSDIST} ((LCL - z)/\sigma)] \]
\[= [1 - \text{NORMSDIST} ((3.2 - 1.0)/1.0) + \text{NORMSDIST} ((-3.2 - 1.0)/1.0)] \]
\[\text{Pr}_1(\delta) = 0.0139 \]

\(\text{Pr}_2(\delta) = \) Probability of a point falling beyond warning limits and within control limits
\[\text{Pr}_2(\delta) = \{ \text{NORMSDIST} ((UCL - z)/\sigma) - \text{NORMSDIST} ((UWL - z)/\sigma) \}
\[+ \{ \text{NORMSDIST} ((LCL - z)/\sigma) + \text{NORMSDIST} ((LWL - z)/\sigma) \} \]
\[= \{ \text{NORMSDIST} ((3.2 - 1.0)/1.0) - \text{NORMSDIST} ((2.2 - 1.0)/1.0) \}
\[+ \{ \text{NORMSDIST} ((-3.2 - 1.0)/1.0) + \text{NORMSDIST} ((-2.2 - 1.0)/1.0) \} \]
\[= 0.1018 \]

\(\text{Pr}_3(\delta) = \) Probability that statistic, U is greater than \(U^* \)
\[= P(U > U^*) \]
\[= P[U > U^* - v\delta^2/n] \]
\[= \text{CHIDIST} (26.3 - 16*1.0*1.0/4, 16) \]
\[= 0.1338 \]

The probability of signal \(P(\delta) = \text{Pr}_1(\delta) + \text{Pr}_2(\delta) \times \text{Pr}_3(\delta) \)
\[= 0.0139 + 0.1018 \times 0.1338 \]
\[P(\delta) = 0.0275 \]

Average run length (ARL) = \(1 / P(\delta) \)
\[= 36.32 \]

241