CONTENTS

1 INTRODUCTION \hspace{1cm} 1 - 8

2 REVIEW OF LITERATURE \hspace{1cm} 9 - 33

2.1 Soybean \hspace{1cm} 9

\hspace{1cm} 2.1.1 Processing of soybean \hspace{1cm} 10

\hspace{1cm} 2.1.2 Soybean in ice cream \hspace{1cm} 12

2.2 Buttermilk \hspace{1cm} 13

\hspace{1cm} 2.2.1 Buttermilk in ice cream \hspace{1cm} 14

\hspace{1cm} 2.2.2 Condensed buttermilk in ice cream \hspace{1cm} 16

\hspace{1cm} 2.2.3 Dried buttermilk in ice cream \hspace{1cm} 16

2.3 Butterfat substitutes in ice cream \hspace{1cm} 17

\hspace{1cm} 2.3.1 Vegetable oils in ice cream \hspace{1cm} 18

\hspace{1cm} 2.3.2 Margarine in ice cream \hspace{1cm} 19

2.4 Physico chemical properties of mix and ice cream \hspace{1cm} 20

\hspace{1cm} 2.4.1 Overrun \hspace{1cm} 20

\hspace{1cm} 2.4.1.1 Effect of viscosity and surface tension \hspace{1cm} 20

\hspace{1cm} 2.4.1.2 Effect of the mix constituents \hspace{1cm} 21

\hspace{1cm} 2.4.2 Composition and characteristics of mix \hspace{1cm} 24

\hspace{1cm} 2.4.3 Mix properties as influenced by processing \hspace{1cm} 25

\hspace{1cm} 2.4.4 Effect of stabilizers and emulsifiers \hspace{1cm} 26

2.5 Study on the structure of ice cream \hspace{1cm} 28

2.6 Drying of mix and its effect on the quality of ice cream \hspace{1cm} 29

2.7 Effect of storage on ice cream mix powder \hspace{1cm} 31
2.7.1 Effect of heat treatment during drying
2.7.2 Freezedried mix powder

3 EXPERIMENTAL

3.1 Analysis of buttermilk

3.1.1 General procedure
3.1.1.1 Soybean processing
3.1.1.2 Blending of soybean with buttermilk
3.1.1.3 Soft-serve ice cream (SSI) mix preparation
3.1.1.4 Drying of soy-buttermilk SSI mix
3.1.1.5 Freezing of the mix

3.1.2 Process variables
3.1.2.1 Ratio of non-fat soysolids to non-fat buttermilk solids
3.1.2.2 Level of sugar
3.1.2.3 Source of additional fat
3.1.2.4 Level of stabilizer
3.1.2.5 Addition of flavours

3.1.3 Method of manufacture of milk-based SSI

3.2 Storage stability of soft serve ice cream mix powder (SSIP)

3.3 Analytical methods

3.3.1 Butter Milk
3.3.1.1 Total solids
3.3.1.2 Protein
3.3.1.3 Fat
3.3.1.4 Ash
3.3.1.5 Carbohydrate 49
3.3.2 Soybean 49
 3.3.2.1 Total solids 49
 3.3.2.2 Protein 49
 3.3.2.3 Fat 50
 3.3.2.4 Ash 50
 3.3.2.5 Total carbohydrate 50
3.3.3 Soy-buttermilk SSI mix 50
 3.3.3.1 Relative viscosity 50
 3.3.3.2 Surface tension 52
 3.3.3.3 Specific gravity 54
 3.3.3.4 Whipping ability 54
 3.3.3.5 Overrun 54
 3.3.3.6 Melting rate 54
 3.3.3.7 Structure of SSI 55
3.3.4 SSI mix powder (SSIP) 55
 3.3.4.1 Moisture 55
 3.3.4.2 Protein 55
 3.3.4.3 Non-protein-nitrogen (NPN) 56
 3.3.4.4 Fat 56
 3.3.4.5 Free fat 56
 3.3.4.6 Crude fibre 57
 3.3.4.7 Ash 58
 3.3.4.8 Peroxide value 58
 3.3.4.9 Solubility index 59
 3.3.4.10 Bulk and average particle density and the percent volume occupied by powder particles 59
3.3.5 SSIP mix after reconstitution 60
3.3.5.1 Relative viscosity 60
3.3.5.2 Surface tension 60
3.3.5.3 Specific gravity 60
3.3.5.4 Overrun 61
3.3.5.5 Melting rate 61
3.3.5.6 Sensory score 61

3.4 Bacteriological quality 61
3.4.1 Standard plate count 61
3.4.2 Coliform test 61

3.5 Sensory evaluation and consumers acceptance 62
3.5.1 Sensory evaluation 62
3.5.2 Consumers acceptance 63

3.6 Cost estimation 63
3.6.1 Assumptions 64

4 RESULTS AND DISCUSSION 65 - 157
4.1 Particulars of soybean and buttermilk 66
4.1.1 Soybean 66
4.1.2 Buttermilk 67

4.2 Standardization of the method of manufacture 68
4.2.1 Preliminary observations on the effect of the major SSI mix ingredients on the product quality 68
4.2.1.1 Soysolids-buttermilk solids ratio 68
4.2.1.2 Sugar and fat levels 69
4.2.1.3 Source of additional fat 69
4.2.2 Effect of the addition of stabilizer on the physical properties of SSI 69
4.2.2.1 Effect of stabilizer on the relative viscosity (RV) 70
4.2.2.2 Effect of stabilizer on surface tension (ST) 73
4.2.2.3 Effect of stabilizer on specific gravity 75
4.2.2.4 Effect of stabilizer on whipping ability 76
4.2.2.5 Effect of stabilizer on melting rate 84
4.2.2.6 Effect of stabilizer on the structure of SSI 87
4.2.2.7 Effect of stabilizer on the sensory quality 88
4.2.3 Effect of different types of flavoring on the sensory characteristics of SSI 94
4.2.4 Consumer acceptance for the SSI 94
4.3 Manufacture of soy-buttermilk soft serve ice cream powder (SSIP) 95
4.4 Shelf-life of soy-buttermilk soft serve ice cream powder 96
4.4.1 Change in moisture 98
4.4.2 Change in non-protein nitrogen 101
4.4.3 Change in free fat content 101
4.4.4 Change in peroxide value 104
4.4.5 Change in solubility index 107
4.4.6 Change in bulk density 110
4.4.7 Change in average particle density 110
4.4.8 Change in percent volume occupied by powder particles 117
4.4.9 Change in relative viscosity 117
4.4.10 Change in surface tension 120
4.4.11 Change in specific gravity 120
4.4.12 Change in maximum overrun 120
4.4.13 Change in melting rate 126
4.4.14 Change in sensory quality 129
4.4.15 Numerical value of the shelf-life of SSIP on the basis of related parameters 136

4.5 Bacteriological quality of fresh SSI and SSIP 141

4.6 Cost estimation for soft serve ice cream from SSIP 142
4.6.1 Cost of raw materials 142
4.6.2 Cost of processing 143
4.6.2.1 Skilled and unskilled personnel 143
4.6.2.2 Utilities 144
4.6.2.2(a) Electricity charges 144
4.6.2.2(b) Water charges 145
4.6.2.2(c) Steam charges 145
4.6.2.3 Fuel charges 147
4.6.2.4 Charges for operating supplies 148
4.6.2.5 Laboratory charges 148
4.6.2.6 Depreciation 149

4.7 Cost of estimation for SSI from fresh mix 151
4.7.1 Cost of raw materials 151
4.7.2 Cost of processing 151
4.7.2.1 Skilled and unskilled personnel 152
4.7.2.2 Utilities 152
4.7.2.2(a) Electricity charges 152
4.7.2.2(b) Water charges 153
4.7.2.2(c) Steam charges 153
4.7.2.3 Charges for operating supplies 153
4.7.2.4 Charges for laboratory 153
4.7.2.5 Depreciation 153

4.8 Cost of soft serve ice cream per cone 155

SUMMARY AND CONCLUSION 158 - 171

I Standardization of method of manufacture 160
II Manufacture of soy-buttermilk SSI powder (SSIP) 164
III Shelf-life of SSIP 166
IV Bacteriological quality of SSI and SSIP 170
V Cost estimation of SSI 170

BIBLIOGRAPHY i-x