LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>i-vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii-ix</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>x-xxiv</td>
</tr>
<tr>
<td>NOTATIONS</td>
<td>xxv-xxvi</td>
</tr>
<tr>
<td>Chapter-1: Introduction</td>
<td>1 – 38</td>
</tr>
<tr>
<td>1.1 Structure And Physical Properties</td>
<td>2</td>
</tr>
<tr>
<td>1.2 Several Routes For Synthesis Of Esters</td>
<td>8</td>
</tr>
<tr>
<td>1.2.1 Fischer esterification</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Reaction with acyl chlorides and acid anhydrides</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Steglich esterification</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Other reactions</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5 Applications of esters</td>
<td>10</td>
</tr>
<tr>
<td>1.3 Acid Catalyzed Esterification</td>
<td>12</td>
</tr>
<tr>
<td>1.3.1 General mechanism</td>
<td>12</td>
</tr>
<tr>
<td>1.3.2 Role of catalyst</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3 Types of catalysts</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3.1 Homogeneous acid catalysts</td>
<td>16</td>
</tr>
<tr>
<td>1.3.3.2 Heterogeneous acid catalysts</td>
<td>17</td>
</tr>
<tr>
<td>1.3.3.2.1 Metal ion complexes as catalysts</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3.2.2 Zeolites</td>
<td>18</td>
</tr>
<tr>
<td>1.3.3.2.3 Enzymes as catalysts</td>
<td>19</td>
</tr>
<tr>
<td>1.3.3.2.4 Ion exchange resins as catalysts</td>
<td>21</td>
</tr>
<tr>
<td>1.4 Beginning Of Ion Exchange Era</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1 Study of Ion exchange resin</td>
<td>22</td>
</tr>
<tr>
<td>1.4.2 Classification of Ion Exchange Resin</td>
<td>23</td>
</tr>
<tr>
<td>1.4.3 How Ion Exchange Resin Work</td>
<td>28</td>
</tr>
<tr>
<td>1.4.4 Properties of Ion Exchange Resins</td>
<td>30</td>
</tr>
<tr>
<td>1.4.5 Kinetics and reaction engineering of ion exchange catalysis</td>
<td>34</td>
</tr>
<tr>
<td>1.4.6 Factors Affecting the Rate of Reactions</td>
<td>36</td>
</tr>
<tr>
<td>1.4.6.1 Effect of temperature</td>
<td>36</td>
</tr>
<tr>
<td>1.4.6.2 Effect of catalyst loading</td>
<td>37</td>
</tr>
</tbody>
</table>
1.4.6.3. Effect of molar ratio
1.4.6.4. Effect of external mass transfer resistance

Chapter - 2 : Literature Review

2.1 Catalysts for Esterification
2.1.1 Homogeneous catalysts
2.1.2 Enzymes as catalysts
2.1.3 Heterogeneous Catalysts
2.1.3.1 Metal ion complexes as catalysts
2.1.3.2 Zeolites as catalysts
2.1.3.3 Ion exchange resins as catalysts

2.2 Critical Literature Review
2.2.1 Scope of the thesis

Chapter - 3 : Materials and Methods

3.1 Materials
3.2 Experimental setup and Procedure
3.3 Solution preparation
3.3.1 Feed Solution
3.3.2 Preparation of standard NaOH Solution
3.3.3 Preparation of std. Oxalic acid

3.4 Analysis and standard calculations

Chapter-4 : Results and Discussion

4.1 Reaction mechanism and kinetics
4.1.1 Reaction Mechanism
4.1.2 Kinetics
4.2 Esterification Of Nonanoic Acid With Methanol Over Different Heterogeneous Catalysts
4.2.1 Comparison of Homogeneous and Heterogeneous Catalysts.
4.2.2 Effect of External Mass Transfer
4.2.3 Influence of Internal Mass Transfer
4.2.4 Effect of catalyst loading
4.2.5 Effect of Temperature
4.2.6 Effect of Feed Molar Ratio
4.2.7 Effect of initial concentration of nonanoic acid
4.2.8 Effect of initial concentration of methanol
4.2.9 Effect of initial concentration of water
4.2.10 Prediction of rate constants
4.2.11 Temperature Dependency 98
4.2.12 Chemical Equilibrium Constant 99
4.2.13 Reaction Enthalpy, Entropy and Free Energy 100
4.2.14 Model Prediction 101

4.3 Esterification of nonanoic acid with ethanol over amberlyst-15 102
4.3.1 Effect of External and internal Mass Transfer 102
4.3.2 Effect of catalyst loading 103
4.3.3 Effect of Feed Molar Ratio 103
4.3.4 Effect of Temperature 104
4.3.5 Effect of initial concentration of nonanoic acid 106
4.3.6 Effect of initial concentration of ethanol 106
4.3.7 Effect of initial concentration of water 109
4.3.8 Calculations of rate constants 111
4.3.9 Temperature Dependency 115
4.3.10 Chemical Equilibrium Constant 116
4.3.11 Reaction Enthalpy, Entropy and Free Energy 117
4.3.14 Model Prediction 117

4.4 Esterification Of Nonanoic Acid With 1-Propanol Over Amberlyst15 118
4.4.1 Effect of External and internal Mass Transfer 118
4.4.2 Effect of catalyst loading 118
4.4.3 Effect of Temperature 119
4.4.4 Effect of Feed Molar Ratio 120
4.4.5 Effect of initial concentration of nonanoic acid 121
4.4.6 Effect of initial concentration of 1-propanol 122
4.4.7 Effect of initial concentration of water 123
4.4.8 Mathematical model for esterification kinetics 125
4.4.9 Temperature Dependency 128
4.4.10 Chemical Equilibrium Constant 130
4.4.11 Reaction Enthalpy, Entropy and Free Energy 131
4.4.12 Model Prediction 131

4.5 Esterification Of Pentanoic Acid With Methanol Over Amberlyst-15 132
4.5.1 Exclusion of Mass Transport Effects 132
4.5.2 Effect of catalyst loading 133
4.5.3 Effect of Temperature 134
4.5.4 Effect of Feed Molar Ratio 135
4.5.5 Effect of initial concentration of Pentanoic acid and methanol 135
4.5.6 Effect of initial concentration of water 139
4.5.7 Mathematical model for esterification kinetics 140
4.5.8 Activation energy and rate Constants 144
4.5.9 Model Prediction 146

4.6 Esterification of Pentanoic Acid With Ethanol Over Amberlyst 15 147
4.6.1 Exclusion of Mass Transport Effects 147
4.6.2 Effect of catalyst loading 147
4.6.3 Effect of reaction Temperature 149
4.6.4 Effect of reactant Molar Ratio 148
4.6.5 Effect of Water on the reaction rate 150
4.6.6 Effect of initial concentration of pentanoic acid 153
4.6.7 Effect of initial concentration of ethanol 155
4.6.8 Calculation of rate constants 158
4.6.9 Activation energy 159
4.6.10 Model Prediction 160

4.7 Esterification Of Pentanoic Acid With 1-Propanol Over Amberlyst-15 161
4.7.1 Effect of catalyst loading 161
4.7.2 Effect of reaction temperature 162
4.7.3 Effect of reactant molar ratio 163
4.7.4 Water sensitivity 164
4.7.5 Effect of acid concentration 165
4.7.6 Effect of Alcohol concentration 165
4.7.7 Kinetics and mathematical modeling 166
4.7.8 Temperature dependency 168
4.7.9 Model Prediction 169

4.8 Effect Of Carbon Chain Length Of Acid And Alcohol 169

4.9 Conclusion and scope for future work 172-174
REFERENCE 175-192
APPENDICES 193-339
PUBLICATION FROM THESIS