LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Embryo showing the presence of (A) Cardiogenic plate at 16th day of gestation and (B) Heart tube formation after 21 days of gestation.</td>
<td>47</td>
</tr>
<tr>
<td>1.2</td>
<td>Diagrammatic representation of the fetal heart showing the foramen ovale and ductus arteriosus.</td>
<td>48</td>
</tr>
<tr>
<td>1.3</td>
<td>A genetic blueprint of heart development.</td>
<td>49</td>
</tr>
<tr>
<td>1.4</td>
<td>Diagrammatic representation of a normal human heart.</td>
<td>50</td>
</tr>
<tr>
<td>1.5</td>
<td>Diagrammatic representation of different types of congenital heart disease</td>
<td>51</td>
</tr>
<tr>
<td>1.6</td>
<td>Flow chart of the clinical phenotypes associated with 22q11.2 deletion syndrome (CATCH 22).</td>
<td>55</td>
</tr>
<tr>
<td>2.1</td>
<td>Standard symbols used to construct a pedigree.</td>
<td>105</td>
</tr>
<tr>
<td>2.2</td>
<td>Different types of probes used for Fluorescence In Situ Hybridization (FISH).</td>
<td>106</td>
</tr>
<tr>
<td>2.3</td>
<td>Ideogram showing (A) probe localization on chromosome 22 and (B) the loci of the probe used for FISH.</td>
<td>107</td>
</tr>
<tr>
<td>2.4</td>
<td>Prevalence of congenital heart disease during 2000-2005 in three major hospitals of Mysore.</td>
<td>108</td>
</tr>
<tr>
<td>2.5</td>
<td>Congenital heart disease recorded at different age groups in Mysore hospitals during the year 2000-2005 (1m = neonates to one month of age; 6m = age of the children is more than one month & less than six months; 1y = age of the children is more than six</td>
<td>109</td>
</tr>
</tbody>
</table>
months & less than one year; 2y= age of the children is more
than one year & less than two year; & so on).

2.6 Representative pedigrees of sporadic cases of congenital heart
disease patients: (A) Female and (B) Male. The symbols which
are square indicate males and circle indicate females; the arrow
directed to the shaded symbol represents the proband. The Roman
number on the left side of the Figure indicates the number of
generations. The Arabic number below the symbols denotes the
number of individuals in that generation.

2.7 Representative pedigree of a family with a male congenital heart
disease patient whose mother had suffered miscarriage three times
before the birth of the proband. The symbols which are square
indicate males and circle indicate females; the arrow directed to
the shaded symbol represents the proband; the crossed
symbols indicates the individuals as deceased. The Roman number
on the left side of the Figure indicates the number of generations.
The Arabic number below the symbols denotes the number of
individuals in that generation.

2.8 Representative pedigrees of familial cases of congenital heart
disease in which the pervious sibling is also affected with congenital
heart disease. The symbols which are square indicate males and
circle indicate females; the arrow directed to the shaded symbol
represents the proband; the shaded symbol represents the affected
individual; the crossed symbol indicate the individual as deceased. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbols denotes the number of individuals in that generation.

2.9 Representative pedigrees of familial cases of congenital heart disease: (A) Maternal side inheritance and (B) Paternal side inheritance. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; the shaded symbols represents the affected individual; the crossed symbol indicate the individual as deceased. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbols denotes the number of individuals in that generation.

2.10 Representative pedigree of consanguineous marriages between parents of congenital heart disease patients: (A) Uncle-niece marriage and (B) First-cousin marriage. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbols represents the proband; the crossed symbols indicates the individuals as deceased. The double line indicates consanguineous marriage. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbols denotes the number of individuals in that generation.
2.11 Representative pedigree of consanguineous marriages in the family of congenital heart disease patients: (A) Uncle-niece marriage between parents and grandparents and (B) Uncle-niece marriage between parents and First-cousin marriage between grandparents. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; the crossed symbols indicate the individuals as deceased. The double line indicates consanguineous marriage. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.

2.12 Representative pedigree of consanguineous marriages in the family of congenital heart disease patients: First-cousin marriage between parents and grandparents. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; the crossed symbols indicate the individuals as deceased. The double line indicates consanguineous marriage. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.
2.13 Representative pedigree of consanguineous marriages in the family of congenital heart disease patients: (A) Uncle-niece marriage between maternal grandparents and (B) First-cousin marriage between paternal grandparents. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; the crossed symbols indicate the individuals as deceased. The double line indicates consanguineous marriage. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.

2.14 G-banded chromosomes of a female congenital heart disease patient with normal chromosomes [46, XX]: (A) Metaphase and (B) Karyotype of the above metaphase.

2.15 G-banded chromosomes of a male congenital heart disease patient with normal chromosomes [46,XY]: (A) Metaphase and (B) Karyotype of the above metaphase.

2.16 Different types of congenital heart disease associated with free trisomy 21 patients under study.

2.17 G-banded chromosomes of a female congenital heart disease patient with trisomy 21 [47,XX,+21]: (A) Metaphase showing trisomy 21 and (B) Karyotype of the above metaphase.

2.18 Proband at the age of 9 months showing clinically microcephaly, high nasal bridge, small mouth, small nose, long distance from top
of lip to bottom of nose, eyes far apart and poor muscle strength.

2.19 Pedigree of the family with isochromosome 18p [i(18p)] in the proband. The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband. The Roman number on the left side of the figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation. The double line between the parents of the proband indicates the First cousin marriage.

2.20 G-banded chromosomes of congenital heart disease patient with isochromosome 18p [47,XX,+i(18p)]: (A) Metaphase showing the i(18p) (arrow) and (B) Karyotype of the above metaphase.

2.21 FISH plate showing chromosome 18p subtelomeric region on metaphase chromosome of the isochromosome 18p child. FISH probe identifies chromosome 18p (spectrum green), centromeric 18 (spectrum aqua), chromosome 11p (spectrum green) and chromosome 11q (spectrum orange). The labels 18p and arrow denote the 18p of the normal chromosome 18 (white) and isochromosome 18p (yellow) respectively.

2.22 Pedigree of the family of congenital heart disease patient with trisomy 21 and reciprocal translocation between subtelomeric regions of chromosome 9q and 13q [47,XY,+21,t(9;13)(q34.1;q34)]: The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the
proband; the shaded symbol denotes affected individuals; crossed symbols indicate the individual as deceased. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.

2.23 G-banded metaphase chromosomes of the congenital heart disease patient with Trisomy 21 and subtelomeric deletion in chromosome 9 [47,XY,+21,del(9)(q34)]: (A) Metaphase showing (i) Trisomy 21; (ii) Subtelomeric deletion (arrow) and (B) Karyotype of the above metaphase.

2.24 FISH image of the proband [47,XY,+21,t(9;13)(q34.1;q34)]: (A) Trisomy 21 (Spectrum red) and (B) Subtelomeric deletion on chromosome 9q and the translocation of the deleted region on subtelomeric region of chromosome 13q on metaphase chromosomes of the proband. (a) Normal chromosome 9q region (Spectrum red); (b) Chromosome 9 with subtelomeric deletion of 9q; (c) Chromosome 13 with subtelomeric region of chromosome 9 (Spectrum red).

2.25 FISH image showing the reciprocal translocation between subtelomeric region of chromosome 9q and 13q on metaphase chromosomes of the proband.
[47,XY,+21,t(9;13)(q34.1;q34)]: (a) Normal chromosome 9q region (Spectrum red); (b) Chromosome 9 with subtelomeric region of chromosomes 13 (spectrum green and orange); (c) Chromosome 13q with subtelomeric region of chromosome 9 (Spectrum red) and (d) Normal chromosome 13q region (Spectrum green and orange).

2.26 Diagrammatic representation of the subtelomeric reciprocal translocation between chromosomes 9q and 13q: A- ideogram of (i) normal chromosome 9 and (ii) chromosome 9 with subtelomeric region of chromosome 13q; B- ideogram of (i) chromosome 13 and (ii) chromosome 13 with subtelomeric region of chromosome 9q.

2.27 Pedigree of the family of congenital heart disease patient with pericentric inversion in chromosome 9 [inv(9)(p11-q13)]: The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; crossed symbols indicate the individual as deceased. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.

2.28 G-banded chromosomes of the congenital heart disease patient with inversion in chromosome 9 [inv(9)(p11-q13)]: (A) Metaphase showing inv(9)(p11-q13) (arrow) and (B) Karyotype of the above metaphase.
2.29 Pedigree of the family of congenital heart disease patient with pericentric inversion in chromosome 9 [inv(9)(p11-q13)]: The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband; the shaded dot in the circle denotes the similar inversion carrier mother; crossed symbols indicates the individual as deceased. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation. The double line between the maternal grandparents of the proband indicates the consanguineous marriage (first cousin marriage).

2.30 G-banded chromosomes of the congenital heart disease patient with inversion in chromosome 9 [inv(9)(p11-q13)]: (A) Metaphase showing inv(9)(p11-q13) (arrow) and (B) Karyotype of the above metaphase.

2.31 G-banded chromosomes of the mother of congenital heart disease patient with inversion in chromosome 9 [inv(9)(p11-q13)]: (A) Metaphase showing inv(9)(p11-q13) (arrow) and (B) Karyotype of the above metaphase.

2.32 Diagrammatic representation of the pericentric inversion in chromosome 9 [inv(9)(p11-q13)]: A- (i) normal ideogram of chromosome 9 and (ii) enlarged view of normal chromosome 9; B- (i) ideogram of chromosome 9 with inversion and
(ii) enlarged view of chromosome 9 with inversion.

2.33 Pedigree of the family of congenital heart disease patient with complex variant translocation among chromosomes 5, 9 and 13 \[t(5:9:13)(q14;p24;q34.1)]: The symbols which are square indicate males and circle indicate females; the arrow directed to the shaded symbol represents the proband. The Roman number on the left side of the Figure indicates the number of generations. The Arabic number below the symbol denotes the number of individuals in that generation.

2.34 G-banded chromosomes of the congenital heart disease patient with complex variant translocation among chromosomes 5, 9 and 13 \[t(5;9;13)(q14;p24;q34.1)]: (A) Metaphase showing (i) del5q14 (arrow) and (ii) t(5;9)(q14;p24) and (B) Karyotype of the above metaphase.

2.35 FISH image showing the complex variant translocation between chromosomes 5q, 9p and 13q on metaphase chromosomes of the proband \[t(5;9;13)(q14;p24;q34.1)]: (a) Normal chromosome 5; (b) Abnormal chromosome 5 with part of 5q deleted; (c) Normal chromosome 9; (d) Abnormal chromosome 9 with the deleted part of chromosome 5q; (e) Chromosome 13 with the deleted subtelomeric region of chromosome 9p.

2.36 Diagrammatic representation of complex variant translocation between chromosomes 5q, 9p and 13q on metaphase chromosomes of the proband \[t(5;9;13)(q14;p24;q34.1)]: A- ideogram of (i) normal
chromosome 5 and (ii) chromosome 5q showing deletion of 5q14; B- ideogram of (i) normal chromosome 9 and (ii) chromosome 9 showing 9p24 deletion and translocated 5q14; C- ideogram of (i) normal chromosome 13 and (ii) chromosome 13 showing the translocated 9p24.

2.37 Representative FISH images of controls subjected for microdeletion analysis to evaluate the probe efficiency showing 22q11.2 region (arrows): (A) Lymphocytes and (B) Lymphocytes and metaphase chromosomes.

2.38 Representative FISH images (A) and (B) of congenital heart disease patients subjected for microdeletion analysis showing 22q11.2 regions (arrows).

2.39 Polymerase chain reaction amplified products of all the 21 septal defect patients on agarose gel subjected for mutation screening: (A) First set of 10 samples and (B) Second set of 11 samples.

2.40 Chromatogram displaying normal sequence of nucleotide 886 bp (arrow) in exon 3 of GATA4 in 21 congenital heart disease patients.

2.41 Schematic representation showing the formation of isochromosome 18p in the proband.