CONTENTS

CHAPTER – I: General Introduction

A. Ethnomedicinal approach: The concept of golden triangle
 a. Categories of botanical medicines 01
 b. Plants as a source of bioactive compounds 02
B. Technological advances in drug discovery
 a. Natural product drug discovery 03
 b. Single-ingredient drugs 04
C. Natural products as sources of new drugs in human disease management 04
 a. Economic status 07
D. Major areas of research involving biological active plant constituents 08
 a. Antibiotic resistance in microorganisms 09
 b. Plants as a source of drugs for infectious diseases 10
 c. Plants with antimicrobial activity 10
E. Pest problem in Agriculture 14
 a. Pesticides in Agriculture 14
F. Dark side of Pesticides 14
 a. Pesticides in aquatic system 14
 b. Pesticide effects on human beings 15
 c. Pesticide residues 16
 d. Pesticides banned 16
 e. Resistance to Pesticides 17
G. Current status of the plant protection world wide 18
H. Current status of the plant protection in India 18
I. Concept of sustainable agriculture 19
 a. Concept of IPM 20
J. Role of plants in plant disease management 20
 a. Therapeutic benefit 21
K. Diversity and importance of medicinal plants in India 21
 a. Herbal medicinal research in India 22
 b. Medicinal plants of India. 23

CHAPTER - II: Antibacterial and antifungal activity of aqueous extracts

A. Introduction 26
B. Review of Literature
 a. Antibacterial activity of aqueous extracts 27
 b. Antifungal activity of aqueous extracts 31
C. Material and Methods
 a. Selection of plants 33
 b. Plant material 33
 c. Extraction 33
 d. Phytopathogenic bacterial cultures 34
 e. Phytopathogenic fungi 34
 f. Human pathogenic bacteria 35
 g. Antibacterial activity assay of aqueous extract 35
 h. Antifungal activity assay of aqueous extract 35
D. Results.
 a. Diagnostic features of Phytopathogenic Xanthomonas pathovars 36
 b. Diagnostic features of the Phytopathogenic fungi 36
 c. Diagnostic features of the human pathogenic bacteria 39
 d. Antibacterial activity assay of aqueous extract.
 I. Phytopathogenic bacteria 40
 II. Human pathogenic bacteria 41
 e. Antifungal activity assay of aqueous extract 42
 f. pH of the extract 42

E. Discussion 43

CHAPTER - III: Antibacterial and antifungal activity of different solvent extracts 52-70

A. Introduction 52

B. Review of literature
 a. Antibacterial activity of organic solvent extracts against human plant pathogenic bacteria
 I. Methanol extract 54
 II. Ethanol extract 56
 III. Hexane extract 57
 IV. Ethyl acetate extract 57
 V. Petroleum ether extract 58
 VI. Chloroform extract 58
 VII. Other extracts 58
 b. Antifungal activity of organic solvent extracts against human plant pathogenic fungi
 I. Methanol extract 59
 II. Ethanol extract 61
 III. Petroleum ether extract 61
 IV. Other extracts 62

C. Material and Methods
 a. Plant material 62
 b. Solvents used for extraction 62
 c. Solvent extraction 63
 d. Antibacterial activity assay 63
 e. Test bacteria
 I. Phytopathogenic bacteria 64
 II. Human pathogenic bacteria 64
 f. Antifungal activity assay 64
 g. Test phytopathogenic fungi 65

D. Results
 a. Antibacterial activity assay
 I. Human pathogenic bacteria 65
 II. Phytopathogenic bacteria 66
 b. Antifungal activity assay 66

E. Discussion 67
CHAPTER - IV: Phytochemical analysis 71-94
A. Introduction 71
B. Review of Literature 73
C. Material and Methods
 a. Preparation of Solvent extracts 82
 b. Determination of extractive values 82
 c. Phytochemical analysis.
 I. Tests for alkaloids 83
 II. Tests for carbohydrates and glycosides 83
 III. Test for phytosterols 84
 IV. Test for oils and fats 85
 V. Test for saponins 85
 VI. Test for phenolic compounds and tannins 85
 VII. Test for proteins and amino acids 86
 VIII. Test for gums and mucilages 86
 IX. Test for volatile oil 86
d. Separation by Thin Layer Chromatography 86
D. Results.
 a. Determination of extractive values 87
 b. Phytochemical analysis 87
 c. Separation by Thin layer Chromatography 88
E. Discussion 89

CHAPTER - V: Isolation, identification and structural elucidation of bioactive principle from Prosopis juliflora and other plants 95-126
A. Introduction 95
B. Review of Literature
 a. Antibacterial activity of compounds isolated from plant origin 96
 b. Antifungal activity of compounds isolated from plant origin 100
C. Material and methods
 a. Fractionation of Methanol extract 105
 b. Isolation of active fraction 105
 c. Separation by TLC and detection of alkaloids 105
 d. Isolation of the active principle 106
 e. Determination of melting point by capillary tube method 106
 f. Estimation of yield of the active principle 106
 g. Characterization of the active principle 106
 h. Determination of Minimal Inhibitory Concentration (MIC) of the active principle
 I. Against Phytopathogenic fungi 108
 II. Against pathogenic human pathogenic bacteria 108
 i. Determination of bactericidal activity 109
 j. Determination of fungicidal activity 109
 k. Stability of the active principle 109
 l. Identification of active fractions from other plants 109
 m. Determination of MIC of the active fraction on pathogenic bacteria 110
D. Results.

a. Fractionation of methanol extract
b. Isolation of active fraction
c. Separation by TLC and detection of alkaloids
d. Isolation of the active principle
e. Determination of melting point by capillary tube method
g. Estimation of yield of the active principle
h. Characterization of the active principle by NMR spectroscopy
j. Determination of Minimal Inhibitory Concentration (MIC) of the active principle
 I. Against phytopathogenic fungi
 II. Against phytopathogenic bacteria
 III. Against human pathogenic bacteria
k. Determination of bactericidal activity
l. Determination of fungicidal activity
m. Stability of the active principles
o. Determination of MIC of the active fractions on pathogenic bacteria
 I. Against phytopathogenic bacteria
 II. Against human pathogenic bacteria
p. Comparative efficacy of the active fractions

E. Discussion

CHAPTER - VI: Biological activities of Julifloravizole

A. Introduction

B. Review of literature

a. Potential of plants for the management of plant diseases caused by fungi
b. Potential of plants for the management of plant diseases caused by bacteria
c. Potential of plants as antioxidants

C. Materials and methods.

a. Antibacterial activity assay of solvent extracts of *Prosopis juliflora* and Julifloravizole against *Staph. aureus*
 I. Isolation and identification of *Staph. aureus*
 II. Antibacterial activity assay
 III. Determination of MIC
b. *In vivo* antifungal activity assay of Julifloravizole
 I. Seed sample
 II. Seed treatment with synthetic fungicides and Julifloravizole
 III. Standard Blotter Method
 IV. Seed germination and seedlings vigour
 V. Seed storage studies
 VI. Evaluation of the nutritional qualities
 • Estimation of total carbohydrates
 • Estimation of total water soluble protein
 VII. Effect of Julifloravizole on seedling growth
 c. Antioxidant activity of Julifloravizole by DPPH method
D. Results
 a. Antibacterial activity assay of solvent extracts of Prosopis juliflora and Julifloravizole against Staph. aureus
 I. Isolation and identification of Staph. aureus 136
 II. Antibacterial activity assay 137
 III. Determination of Minimal Inhibitory Concentration (MIC) 137

 b. In vivo antifungal activity assay Julifloravizole
 I. Synthetic fungicide 137
 II. Julifloravizole 137
 III. Seed germination and seedling vigour 137
 IV. Seed storage studies 138
 V. Evaluation of the nutritional qualities
 • Estimation of total carbohydrates 138
 • Estimation of total water soluble protein 138
 VI. Effect of Julifloravizole on seedling growth 139

C. Antioxidant activity of Julifloravizole by DPPH method 139

E. Discussion 139

SUMMARY 144-152

REFERENCES 153-180