TABLE OF CONTENTS

Candidate’s declaration ... i
Certificate of the supervisor ii
Acknowledgement ... iii
Abstract ... iv
Table of contents ... vi
List of Tables ... xii
List of Figures .. xvii
List of Abbreviations ... xxii

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>SUBJECT</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
<td>1-9</td>
</tr>
<tr>
<td></td>
<td>1.1 PRODUCTION SYSTEM</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 PRODUCT LIFE CYCLE</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 LIFE CYCLE PERSPECTIVE TO PRODUCTION SYSTEM</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 DECISION MAKING IN PRODUCTION SYSTEM LIFE CYCLE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.5 OBJECTIVES OF PRESENT WORK</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.6 METHODOLOGY ADOPTED FOR PRESENT WORK</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>1.7 ORGANIZATION OF PRESENT WORK</td>
<td>7</td>
</tr>
<tr>
<td>II</td>
<td>LITERATURE REVIEW</td>
<td>11-33</td>
</tr>
<tr>
<td></td>
<td>2.1 LITERATURE REVIEW ON PRODUCTION SYSTEM LIFE CYCLE MODELS</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>2.2 LITERATURE REVIEW ON ACTIVITIES OF PRODUCTION SYSTEM LIFE CYCLE</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Product Idea Generation and Selection</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Product Design</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Process Design</td>
<td>18</td>
</tr>
</tbody>
</table>
2.2.4 Facility Location 19
2.2.5 Facility Layout 21
2.2.6 Quality Control 22
2.2.7 Production Planning 23
2.2.8 Scheduling 24
2.2.9 Inventory Control 25
2.2.10 Work-system Design 26

2.3 LITERATURE REVIEW ON APPLICATIONS OF SELECT MULTI-CRITERIA DECISION MAKING APPROACHES

2.3.1 Interpretive Structural Modelling (ISM) Approach 27
2.3.2 Analytical Hierarchy Process (AHP) Approach 28
2.3.3 Graph Theoretic Approach (GTA) 29
2.3.4 MOORA Approach 29
2.3.5 PSI Method 30

2.4 COMPARISON OF EXISTING PRODUCTION SYSTEM LIFE CYCLE MODELS 30

2.5 GAPS IDENTIFIED FROM LITERATURE ANALYSIS 33

III PRODUCTION SYSTEM LIFE CYCLE (PSLC): INTROSPECTION 35-67

3.1 INITIATION OF SYSTEM 37
3.2 DESIGN AND DEVELOPMENT OF SYSTEM 39
 3.2.1 Product Design 39
 3.2.2 Process Design 39
 3.2.3 Facility Location 40
 3.2.4 Facility Layout 46
3.3 OPERATION OF SYSTEM 46
 3.3.1 Quality Control System 46
 3.3.2 Production Planning System 47
 3.3.3 Scheduling System 48
 3.3.4 Inventory Control System 49
3.3.5 Work-system Design 49
3.3.6 Start-up Planning and Operation Instigation 50

3.4 REVISION OF SYSTEM 66
3.5 TERMINATION OF SYSTEM 66
3.6 CONCLUDING REMARKS 67

IV IDENTIFICATION OF QUALITY ENABLED FACTORS (QEFs) IN DIFFERENT STAGES OF PSLC 69-105

4.1 QUALITY ENABLED FACTORS (QEFs) IN DIFFERENT STAGES OF PSLC 69

4.1.1 QEFs in Initiation Stage 69
4.1.2 QEFs in Product Design Stage 70
4.1.3 QEFs in Process Design Stage 72
4.1.4 QEFs in Facility Location Stage 74
4.1.5 QEFs in Facility Layout Stage 75
4.1.6 QEFs in Quality Control System Stage 76
4.1.7 QEFs in Production Planning System Stage 77
4.1.8 QEFs in Scheduling System Stage 79
4.1.9 QEFs in Inventory Control System Stage 80
4.1.10 QEFs in Work-system Design Stage 82
4.1.11 QEFs in Start-up Planning and Operation Instigation Stage 84
4.1.12 QEFs in Revision Stage 85
4.1.13 QEFs in Termination Stage 87

4.2 VALIDATION OF QUALITY ENABLED FACTORS (QEFs) OF DIFFERENT STAGES OF PSLC 88

4.2.1 Questionnaire Development 88
4.2.2 Analysis of Survey Data 90
 4.2.2.1 Analysis of survey data for initiation stage 90
 4.2.2.2 Analysis of survey data for product design stage 92
 4.2.2.3 Analysis of survey data for process design stage 93
4.2.2.4 Analysis of survey data for facility location stage
4.2.2.5 Analysis of survey data for facility layout stage
4.2.2.6 Analysis of survey data for quality control system stage
4.2.2.7 Analysis of survey data for production planning system stage
4.2.2.8 Analysis of survey data for scheduling system stage
4.2.2.9 Analysis of survey data for inventory control system stage
4.2.2.10 Analysis of survey data for work-system design stage
4.2.2.11 Analysis of survey data for start-up planning and operation instigation stage
4.2.2.12 Analysis of survey data for revision stage
4.2.2.13 Analysis of survey data for termination stage

4.3 CONCLUDING REMARKS

V ANALYSIS OF QUALITY ENABLED FACTORS OF PSLC: ISM APPROACH

5.1 ISM APPROACH

5.2 DEVELOPMENT OF ISM MODEL FOR DIFFERENT STAGES OF PSLC

5.2.1 ISM Model for Initiation Stage
5.2.2 ISM Model for Product Design Stage
5.2.3 ISM Model for Process Design Stage
5.2.4 ISM Model for Facility Location Stage
5.2.5 ISM Model for Facility Layout Stage
5.2.6 ISM Model for Quality Control System Stage
5.2.7 ISM Model for Production Planning System Stage
5.2.8 ISM Model for Scheduling System Stage 152
5.2.9 ISM Model for Inventory Control System Stage 157
5.2.10 ISM Model for Work System Design Stage 161
5.2.11 ISM Model for Start-up Planning & Operation Instigation Stage 170
5.2.12 ISM Model for Revision Stage 175
5.2.13 ISM Model for Termination Stage 181

5.3 CONCLUDING REMARKS 187

VI PRIORITIZATION OF QUALITY ENABLED FACTORS OF PSLC: AHP APPROACH 189-217
6.1 ANALYTIC HIERARCHY PROCESS 189
6.2 IDENTIFICATION OF QEFs AFFECTING PSLC DECISIONS 190
6.3 DEVELOPMENT OF AHP MODEL 197
6.4 CONCLUDING REMARKS 217

VII QUANTIFICATION OF QUALITY ENABLED FACTORS OF PSLC: GRAPH THEORETIC APPROACH 219-261
7.1 GRAPH THEORETIC APPROACH 220
7.1.1 PSLC Digraph 220
7.1.2 Matrix Representation of PSLC Digraph 222
7.1.2.1 Adjacency matrix (AM-PSLC) 222
7.1.2.2 Characteristic matrix (CM-PSLC) 223
7.1.2.3 Variable characteristic matrix (VCM-PSLC) 224
7.1.2.4 Variable permanent matrix (VPM-PSLC) 224
7.1.3 Permanent function representation of PSLC matrix 225
7.1.3.1 Compact representation of permanent function 228
7.1.3.2 Generalization of permanent function 229
7.1.4 Quantification of F_i’s and e_{ij}’s 230

7.2 PSLC INDEX 231