CONTENTS

ACKNOWLEDGEMENTS

CONTENTS

ABBREVIATIONS

LIST OF FIGURES

LIST OF TABLES

CHAPTER I: INTRODUCTION

1. Drug discovery from plants
2. Antioxidants
3. Microbial infection
4. Cancer
 1.4.1. The eukaryotic cell cycle
 1.4.2. Telomerases
 1.4.3. Apoptosis
 1.4.4. The tumor suppressor p53
 1.4.5. Tumor metastasis
5. Bioassay-guided fractionation
6. *Cephalotaxus griffithii*
7. *Oroxylum indicum*
8. Research aim
9. Research objectives

CHAPTER II: REVIEW OF LITERATURE

CHAPTER III: MATERIALS AND METHODS
3.1. Chemicals and solvents

3.2. Plant material

3.3. Determination of total phenolic content

3.4. Determination of total flavonoid content

3.5. Antioxidant activity
 3.5.1. Scavenging activity of DPPH radical
 3.5.2. Superoxide radical scavenging activity
 3.5.3. Reducing power

3.6. Antimicrobial activity

3.7. Anticancer activity
 3.7.1. Cell culture
 3.7.2. MTT reduction assay
 3.7.3. Wound healing assay
 3.7.4. Transwell migration assay
 3.7.5. Fluorescence microscopy
 3.7.6. DNA fragmentation assay
 3.7.7. Cell cycle analysis
 3.7.8. Mitochondrial membrane potential
 3.7.9. Caspase activity assay
 3.7.10. Reverse transcriptase PCR
 3.7.11. Western blot
 3.7.12. siRNA interference

3.8. Statistical analysis

CHAPTER IV: RESULTS 40-136
4.1. Phytochemical and pharmacological study of *Cephalotaxus griffithii* needle

4.1.1. *Cephalotaxus griffithii* extract induces cell cycle arrest, apoptosis and suppression of hTERT and hTR gene expression on human cancer cells

4.1.1.1. Methods

4.1.1.2. Fractionation of petroleum ether extract of *Cephalotaxus griffithii* needles and effects on cancer cells

4.1.1.2.1. Introduction

4.1.1.2.2. Methods

4.1.1.2.3. Results and discussion

4.1.1.3. Fractionation of fraction 6 and effects on cancer cells

4.1.1.3.1. Introduction

4.1.1.3.2. Methods

4.1.1.3.3. Results and discussion
4.1.2. Essential oil of *Cephalotaxus griffithii* needle

65-80 exert anti-proliferative, anti-migrational and apoptotic effects on human cervical cancer cells

4.1.2.1. Introduction

4.1.2.2. Methods

4.1.2.3. Results

4.1.2.4. Discussion

4.2. **Phytochemical and pharmacological study of**

Cephalotaxus griffithii bark

4.2.1. **Antioxidant, antibacterial, cytotoxic and apoptotic activity of stem bark extracts of**

Cephalotaxus griffithii

4.2.1.1. Methods

4.2.1.2. Results

4.2.1.3. Discussion

4.3. **Phytochemical and pharmacological study of**

Oroxylum indicum bark

4.3.1. **Antioxidant, antibacterial, cytotoxic and apoptotic activity of stem bark extracts of**

Oroxylum indicum

4.3.1.1. Methods

4.3.1.2. Results

4.3.1.3. Discussion
4.3.2. Fractionation of petroleum ether extract of *Oroxylum indicum* bark and effect on cancer cells

4.3.2.1. Introduction

4.3.2.2. Methods

4.3.2.3. Results and discussion

4.3.3. Compound isolation from fraction 5 and effect on cancer cells

4.3.3.1. Introduction

4.3.3.2. Methods

4.3.3.3. Results and discussion

CHAPTER V: DISCUSSION

CHAPTER VI: SUMMARY AND CONCLUSION

BIBLIOGRAPHY

APPENDIX
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE</td>
<td>Acetone</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis of variance</td>
</tr>
<tr>
<td>AO</td>
<td>Acridine orange</td>
</tr>
<tr>
<td>BAX</td>
<td>Bcl-2-associated X</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>B-cell lymphoma 2</td>
</tr>
<tr>
<td>CGB</td>
<td>Cephalotaxus griffithii bark</td>
</tr>
<tr>
<td>CGBA</td>
<td>Cephalotaxus griffithii stem bark acetone</td>
</tr>
<tr>
<td>CGBM</td>
<td>Cephalotaxus griffithii stem bark methanol</td>
</tr>
<tr>
<td>CGBP</td>
<td>Cephalotaxus griffithii stem bark petroleum ether</td>
</tr>
<tr>
<td>CGN</td>
<td>Cephalotaxus griffithii needle</td>
</tr>
<tr>
<td>CGNA</td>
<td>Cephalotaxus griffithii needle acetone</td>
</tr>
<tr>
<td>CGNM</td>
<td>Cephalotaxus griffithii needle methanol</td>
</tr>
<tr>
<td>CGNO</td>
<td>Cephalotaxus griffithii needles essential oil</td>
</tr>
<tr>
<td>CGNP</td>
<td>Cephalotaxus griffithii needle petroleum ether</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarization Transfer</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s medium</td>
</tr>
<tr>
<td>DPPH</td>
<td>2, 2-diphenyl-1-picrylhydrazyl</td>
</tr>
<tr>
<td>EB</td>
<td>Ethidium bromide</td>
</tr>
<tr>
<td>FADD</td>
<td>Fas-associated protein with death domain</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal bovine serum</td>
</tr>
<tr>
<td>FC</td>
<td>Folin-ciocalteu</td>
</tr>
</tbody>
</table>
FGF - Fibroblast growth factors
GAE - Gallic acid equivalent
GC-MS - Gas chromatography–mass spectrometry
HCC - Human cervical cancer
HHT - Homoharringtonine
hTERT - Human Telomerase reverse transcriptase
hTR - Human telomerase RNA
IC$_{50}$ - Concentration that inhibits the cell proliferation by 50%
IR - Infra red
JC1 - 5, 5', 6,6'-tetrachloro-1,1',3,3'-tetraethyl benzimidazolylcarbocyanine iodide
MeOH - Methanol
MID - Minimum inhibitory dose
MS - Mass spectrometry
MTT - 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-tetrazolium bromide
NBT - Nitroblue tetrazolium
NMR - Nuclear magnetic resonance
OIB - *Oroxylum indicum* bark
OIBD - *Oroxylum indicum* bark dichloromethane
OIBM - *Oroxylum indicum* bark methanol
OIBP - *Oroxylum indicum* bark petroleum ether
p53 - Protein 53
PARP - Poly (ADP-ribose) polymerase
PBS - Phosphate buffer saline
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Petroleum ether</td>
</tr>
<tr>
<td>PI</td>
<td>Propidium iodide</td>
</tr>
<tr>
<td>QE</td>
<td>Quercetin equivalent</td>
</tr>
<tr>
<td>RPMI</td>
<td>Roswell Park Memorial Institute</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>siRNA</td>
<td>small interfering RNA</td>
</tr>
<tr>
<td>SORS</td>
<td>Superoxide radical scavenging</td>
</tr>
<tr>
<td>TEP-1</td>
<td>Telomerase-associated protein 1</td>
</tr>
<tr>
<td>TFC</td>
<td>Total flavonoid content</td>
</tr>
<tr>
<td>TPC</td>
<td>Total phenolic content</td>
</tr>
<tr>
<td>USFDA</td>
<td>United States Food and Drug Administration</td>
</tr>
<tr>
<td>ΔΨm</td>
<td>Mitochondrial membrane potential</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

CHAPTER I

Figure 1.1. The fundamental cellular properties are altered during oncogenesis.

Figure 1.2. The eukaryotic cells continually progress through four stages of the cell cycle in order to duplicate its chromosomes and divide.

Figure 1.3. Apoptosis can occur through extrinsic and (or) intrinsic pathway.

Figure 1.4. Cephalotaxus griffithii Hook.f.

Figure 1.5. Oroxylum indicum (L). Benth. ex Kurz.

CHAPTER II

Figure 2.1. Distribution of C. oliveri, C. griffithii, C. alpina, C. harringtonia.

Figure 2.2. Distribution of C. nana, C. hainanensis and C. fortunei.

CHAPTER IV

Figure 4.1.1.1.1. CGN extract treatment reduces human cancer cell viability.
Figure 4.1.1.2. CGN extract treatment induces apoptosis in human breast cancer cells.

Figure 4.1.1.3. CGN extract induces cell cycle arrest in human breast cancer cells.

Figure 4.1.1.4. CGNP extract treatment causes caspase dependent apoptotic cell death in human breast cancer cells.

Figure 4.1.1.5. CGNP extract induced cellular death is dependent on p53 expression in human breast cancer cells.

Figure 4.1.1.6. CGNP extract reduces hTERT, hTR and c-Myc expression in human breast cancer cells.

Figure 4.1.1.7. CGNP extract contains unique phytochemicals as compare to other CGNA and CGNM extracts.

Figure 4.1.1.2.1. Fractionation of CGNP extract produces six fractions.

Figure 4.1.1.2.2. CGNP fraction 6 treatment reduces human cervical and breast cancer cell viability.

Figure 4.1.1.2.3. CGNP fraction 6 treatment induces apoptosis in human cervical cancer cells.

Figure 4.1.1.3.1. Fractionation of CGNP extract fraction 6 leads to isolation of three compounds (impure).

Figure 4.1.1.3.2. CGNC1, CGNC2 and CGNC3 isolated from CGNP extract fraction 6 treatment reduce human cervical and breast cancer cell viability.
Figure 4.1.2.1. CGNO treatment reduces human cervical cancer cell viability.

Figure 4.1.2.2. CGNO treatment inhibits migration of human cervical cancer cell.

Figure 4.1.2.3. CGNO treatment induces apoptosis in human cervical cancer cell.

Figure 4.1.2.4. CGNO treatment does not induce cell cycle arrest in human cervical cancer cell.

Figure 4.1.2.5. CGNO treatment increases mitochondrial membrane depolarization of HeLa cells.

Figure 4.1.2.6. CGNO treatment activates both intrinsic and extrinsic pathways in human cervical cancer cells.

Figure 4.2.1.1. CGB extract can scavenge DPPH free radicals.

Figure 4.2.1.2. CGB extract can scavenge superoxide free radicals.

Figure 4.2.1.3. CGB extract has reducing power ability.

Figure 4.2.1.4. CGB extract treatment reduces human cervical cancer cell viability.

Figure 4.2.1.5. CGB extract treatment induces apoptosis in human cervical cancer cells.

Figure 4.3.1.1. OIB extract can scavenge DPPH free radicals.

Figure 4.3.1.2. OIB extract can scavenge superoxide free radicals.

Figure 4.3.1.3. OIB extract has reducing power ability.
Figure 4.3.1.4. OIB extract treatment reduces human cervical cancer cell viability.

Figure 4.3.1.5. OIB extract treatment induces apoptosis in human cervical cancer cells.

Figure 4.3.1.6. OIBP extract showed unique features of spots as compare with the OIBD and OIBM extracts.

Figure 4.3.2.1. OIBP extract fraction treatment reduces human cervical, liver and breast cancer cell viability.

Figure 4.3.3.1. Thin layer chromatographic profile of the isolated compound and fraction 5 exposed to UV 254 nm.

Figure 4.3.3.2. IR spectra of oroxylin A.

Figure 4.3.3.3. 1H NMR spectra of oroxylin A.

Figure 4.3.3.4. 13C NMR spectra of oroxylin A.

Figure 4.3.3.5. DEPT-90 and DEPT-135 NMR spectra of oroxylin A.

Figure 4.3.3.6. MS spectra of oroxylin A.

Figure 4.3.3.7. Structure of oroxylin A.

Figure 4.3.3.8. Oroxylin A selectively reduces human breast and cervical cancer cell viability.

Figure 4.3.3.9. Oroxylin A treatment induces apoptosis in human cervical cancer cells.

Figure 4.3.3.10. Oroxylin A treatment induces cell cycle arrest in human cervical cancer cells.