CHAPTER III

I- CONVERGENCE OF DIFFERENCE SEQUENCES OF FUZZY REAL NUMBERS DEFINED BY ORLICZ FUNCTION

3.1 INTRODUCTION

The I-convergence of sequences was already discussed in the chapter-II.

An Orlicz function M is a function from $[0,\infty)$ to $[0,\infty)$ such that it is continuous, non decreasing and convex with $M(0) = 0$, $M(x) > 0$ for $x > 0$ and $M(x) \to 0$ as $x \to \infty$. If the convexity of M is replaced by

$$M(x + y) \leq M(x) + M(y)$$

then this function reduces to modulus function.

The concept of difference sequence spaces was first introduced by Kizmaz [57] given as follows:

$$Z(\Delta) = \left\{ (x_k) \in w : \Delta x_k \in Z \right\}$$

where $Z = c, c_0$ and ℓ_∞, and $\Delta x_k = x_k - x_{k+1}$ for all $k \in N$.

Kizmaz proved that these sequence spaces are Banach spaces with the normed by

$$\|(x_k)\| = |x_1| + \sup_{k \geq 1} |\Delta x_k|.$$

Remark 1: If M is an Orlicz function then for all $0 < k < 1$, $M(kx) \leq kM(x)$.

Using the idea of Orlicz function Lindenstrauss and Tzafriri construct the following sequence space:

$$\ell_M = \left\{ x \in w : \sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty, \rho > 0 \right\}$$

This space ℓ_M becomes Banach space, with respect to the norm -

$$\|x\| = \inf \left\{ \rho > 0 : \sum_{k=1}^{\infty} \left(\frac{|x_k|}{\rho}\right) \leq 1 \right\}$$

3.2. DEFINITIONS AND PRELIMINARIES

Definition 3.2.1: A sequence space L^F of fuzzy real numbers is said to be solid if

This Chapter published as an article in the journal ‘Palestine Journal of Mathematics’.
\((Y_k) \in L^\mathcal{F} \) whenever \((X_k) \in L^\mathcal{F} \) and \(|Y_k| \leq |X_k| \) for all \(k \in N \).

Suppose, \(K = \{ k_1 < k_2 < k_3, \ldots \} \subseteq N \) , the space \(\lambda_k^\mathcal{F} = \left\{ (X_k) \in w^\mathcal{F} : (X_k) \in L^\mathcal{F} \right\} \) is known as \(K \)-step space of \(L^\mathcal{F} \).

The canonical pre-image of a sequence \((X_k) \in \lambda_k^\mathcal{F} \) is a sequence \((Y_k) \in w^\mathcal{F} \) defined as follows:

\[
Y_k = \begin{cases}
X_k, & \text{if } k \in K, \\
0, & \text{otherwise}.
\end{cases}
\]

A canonical pre-image of \(\lambda_k^\mathcal{F} \) is a set of canonical pre-images of all elements of \(\lambda_K^\mathcal{F} \), i.e., \(Y \) is in canonical pre-image \(\lambda_k^\mathcal{F} \) if and only if \(Y \) is canonical pre-image of some \(X \in \lambda_K^\mathcal{F} \).

Definition 3.2.2: A sequence space \(L^\mathcal{F} \) is said to be monotone if \(L^\mathcal{F} \) contains the canonical pre-images of all its step spaces.

Definition 3.2.3: A sequence space \(L^\mathcal{F} \) is said to be symmetric if \((X_{\pi(k)}) \in L^\mathcal{F} \), whenever \((X_k) \in L^\mathcal{F} \), \(\pi \) is a permutation on \(N \).

Definition 3.2.4: A sequence \(X = (X_k) \) of fuzzy real numbers is said to be \(I \)-convergent if there exists a fuzzy real number \(X_0 \) such that -

\[\left\{ k \in N : \bar{d}(X_k, X_0) \geq \varepsilon \right\} \subseteq I \text{ for all } \varepsilon > 0 \text{ and we write } I- \lim X_k = X_0. \]

Definition 3.2.5: A sequence \((X_k) \) of fuzzy real numbers is said to be \(I^\mathcal{F} \)-convergent to a fuzzy real number \(X_0 \) (or \(I^\mathcal{F} \)-lim \(X_k = X_0 \)) if there exists \(K = \{ k_1 < k_2 < k_3, \ldots \} \subseteq \psi(I) \) such that \(\lim_{i \to \infty} X_k = X_0 \).

Definition 3.2.6: A sequence \((X_k) \) of fuzzy real numbers is said to be \(I \)- bounded if there exists a real number \(M \) such that the set \(\left\{ k \in N : \bar{d}(X_k, 0) > M \right\} \in I \).

When \(I = I_f \) then \(I_f \)-convergence similar to the usual convergence of sequence of fuzzy real numbers. When \(I = I_\delta \) then \(I_\delta \)-convergence similar to statistical convergence of sequence of fuzzy real numbers. If \(I = I_u \) then \(I_u \) convergence is called uniform convergence of sequence of fuzzy real numbers.
In this chapter $c^{l(F)}$, $c^{0}_{0}(F)$ and $\ell^{l(F)}_{\infty}$ will denote the spaces of I- convergent, I-null and I- bounded sequences of fuzzy real numbers respectively.

Clearly, $c^{0}_{0}(F) \subseteq c^{l(F)} \subseteq \ell^{l(F)}_{\infty}$, the inclusions are strict.

It is easy to see that $\ell^{l(F)}_{\infty}$ is complete with the metric ρ defined by -

$$\rho(X, Y) = \sup_{k} d(X_k, Y_k) \quad \text{where} \quad X = (X_k) \in \ell^{l(F)}_{\infty} \quad ; \quad Y = (Y_k) \in \ell^{l(F)}_{\infty}.$$

Lemma 3.1 (Kamthan and Gupta [3]): A sequence space L^{F} is solid $\Rightarrow L^{F}$ is monotone.

Lemma 3.2: If I is a maximal ideal, then for every $A \subseteq N$; either $A \subseteq I$ or $N \setminus A \subseteq I$.

The current space $\ell^{F}_{\infty}(M, \Delta)$ is given as follows:

$$\ell^{F}_{\infty}(M, \Delta) = \left\{(X_k) \in W_{\infty} : \sup_{k} M \left(\frac{d(\Delta X_k, 0)}{r}\right) < \infty, \text{ for some } r > 0\right\}.$$

forms a complete metric space.

In this chapter we introduce and study the following classes of sequences:

$$\left(c^{l}\right)^{F}(M, \Delta) = \left\{(X_k) : \left\{k : M \left(\frac{d(\Delta X_k, L)}{r}\right) \geq \varepsilon, \text{ for some } r > 0 \text{ and } L \in R(I)\right\} \in I\right\}.$$

For $L = 0$, the above space becomes $(c^{l}_{0})^{F}$ where,

$$\left(c^{l}_{0}\right)^{F}(M, \Delta) = \left\{(X_k) : \left\{k : M \left(\frac{d(\Delta X_k, 0)}{r}\right) \geq \varepsilon, \text{ for some } r > 0\right\} \in I\right\}.$$

Also we define $\left(m^{l}\right)^{F}(M, \Delta) = \left(c^{l}\right)^{F}(M, \Delta) \cap \ell^{F}_{\infty}(M, \Delta),$

$$\left(m^{l}_{0}\right)^{F}(M, \Delta) = \left(c^{l}_{0}\right)^{F}(M, \Delta) \cap \ell^{F}_{\infty}(M, \Delta)$$

where $\Delta X_k = X_k - X_{k+1}$.

3.3. MAIN RESULTS

THEOREM 3.1: The classes of sequences $\left(m^{l}\right)^{F}(M, \Delta)$ and $\left(m^{l}_{0}\right)^{F}(M, \Delta)$ are complete metric spaces with respect to the metric given by

$$f(X, Y) = \bar{d}(X, Y) + \inf_{r > 0} \left\{\sup_{k} M \left(\frac{d(\Delta X_k, \Delta Y_k)}{r}\right) \leq 1\right\}.$$
PROPOSITION 3.1: The classes of sequences \((c^i)^F (M, \Delta) \), \((c_0^i)^F (M, \Delta) \), \((m^i)^F (M, \Delta) \) and \((m_0^i)^F (M, \Delta) \) are not symmetric.

THEOREM 3.2: The classes of sequences \((c_0^i)^F (M, \Delta) \), \((m^i)^F (M, \Delta) \) and \((m_0^i)^F (M, \Delta) \) are solid.

PROPOSITION 3.2: The classes of sequences \((c^i)^F (M, \Delta) \), \((c_0^i)^F (M, \Delta) \), \((m^i)^F (M, \Delta) \) and are not \((m_0^i)^F (M, \Delta) \) convergence free.

THEOREM 3.3: If \(M_1 \) and \(M_2 \) are any two Orlicz functions, then

\[Z(M_1, \Delta) \subseteq Z(M_2^0 M_1, \Delta) \text{ where } Z = c^{l(F)}, c_0^{l(F)} \text{ and } \ell^{l(F)}. \]

THEOREM 3.4: \(Z(M, \Delta) \subseteq (\ell^F)^F (M, \Delta) \) for \(Z = (c^F), (c_0^F)^F. \)

3.4. PROOF OF THE RESULTS OF THE SECTION 3.3.

PROOF OF THEOREM 3.1: Let \((X^n)\) be a Cauchy sequence in \((m^F)^F (M, \Delta) \), where \((X^n) = (X^n_k)\).

Let \(\varepsilon > 0 \) be given. For a fixed \(x_0 > 0 \), choose \(r > 0 \) such that \(M \left(\frac{rx_0}{3} \right) \geq 1 \) and \(m_0 \in N \) such that

\[f(X^n, X^m) < \frac{\varepsilon}{rx_0} \text{ for all } n, m \geq m_0. \]

By definition of \(f \),

\[\bar{d} \left(X^m_i, X^n_i \right) < \varepsilon \]

It follows that \((X^n_k)\) is a Cauchy sequence of fuzzy real numbers and so \(\lim_{m \to \infty} X^m_k \) exist.

Again

\[M \left(\frac{\bar{d}(\Delta X^m_k, \Delta X^n_k)}{f(X^m, X^n)} \right) \leq 1 \leq M \left(\frac{rx_0}{3} \right) \]

\[\Rightarrow \bar{d}(\Delta X^m_k, \Delta X^n_k) < \frac{\varepsilon}{3} \text{ for all } n, m \geq m_0. \]

Thus \((\Delta X^m_k)\) is a Cauchy sequence of fuzzy real numbers and so \(\lim_{m \to \infty} \Delta X^m_k = \Delta X_k \) exist.

Moreover using the existence of \(\lim_{m \to \infty} X^m_k \) we can conclude that so \(\lim_{m \to \infty} X^m_k \) exist.
Using continuity of M,
\[M\left(\frac{\bar{d}(\Delta X^n, \Delta X_k)}{r}\right) \leq 1.\]

Taking infimum of such r’s we get
\[f(X^n, X) < \frac{\varepsilon}{r_{X_0}} < \varepsilon \quad \text{for all } n \geq m_0.\]

Thus (X^n) converges to X.

Since $X^n, X^m \in (m^l)^f(M, \Delta)$ so there exist fuzzy numbers Y_m, Y_k such that
\[A = \left\{ k \in N : M\left(\frac{\bar{d}(\Delta X^n, Y_k)}{r}\right) < M\left(\frac{\varepsilon}{3r}\right) \right\} \in \psi(I) \]
\[B = \left\{ k \in N : \bar{d}(\Delta X^n, Y_m) \leq \frac{\varepsilon}{3} \right\} \in \psi(I). \]

Now, $A \cap B \in \psi(I)$ and let $k \in A \cap B$.

Then
\[\bar{d}(Y_k, Y_m) \leq \bar{d}(Y_k, \Delta X^n) + \bar{d}(\Delta X^n, \Delta X^m) + \bar{d}(\Delta X^m, Y_m) \]
\[< \varepsilon \quad \text{for all } n, m \geq m_0.\]

Thus (Y_k) is Cauchy sequence in $L(R)$. Since $L(R)$ is complete, there exists a fuzzy real number Y s.t. \(\lim_{k \to \infty} Y_k = Y \). To show \(I - \lim \Delta X_k = Y \).

This follows from above inequalities as
\[\bar{d}(\Delta X, Y) \leq \bar{d}(\Delta X, \Delta X^n) + \bar{d}(\Delta X^n, \Delta X^m) + \bar{d}(\Delta X^m, Y) \]
\[< \eta. \]

Thus \(I\)-lim $X_k = Y$. Hence $(X_k) \in (m^l)^f(M, \Delta)$. This completes the roof.

PROOF OF PROPERTY 3.1: To verify it we consider the following example.

EXAMPLE 3.1: Let \(I = I_0 \) and $M(x) = x$. Consider the sequence
\[(X_k) \in (c^l)^f(M, \Delta) \subset (c^l)^f(M, \Delta)\]
as follows:
\[X_k(t) = \begin{cases} 1, & \text{if } -1 \leq t \leq 0, \\ 0, & \text{otherwise.} \end{cases} \]

and for $k \geq 2$
\[X_k(t) = \begin{cases} 1, & \text{if } -\left(\sum_{i=1}^{k-1} \frac{1}{2^r} \right) + \frac{1}{k} \leq t \leq -\sum_{i=1}^{k-1} \frac{1}{2^r}, \\ 0, & \text{otherwise} \end{cases} \]
For each $\alpha \in (0,1]$ we have $[X_1]^\alpha = [-1,0]$ and for $k \geq 2$,

$$[X_k]^\alpha = \left[-\left(\sum_{r=1}^{k-1} \frac{1}{2r} + \frac{1}{k} \right), -\sum_{r=1}^{k-1} \frac{1}{2r} \right]$$

Then for all $\alpha \in (0,1]$ and $k \in N$ we have,

$$[\Delta X_k]^\alpha = \left[-(2k)^{-1}, \left(2k^{-1} + (k+1)^{-1} \right) \right]$$

Hence $\Delta X_k \to 0$ as $k \to \infty$. Thus $(X_k) \in (c_0')^F (M, \Delta) \subseteq (c')^F (M, \Delta)$

Let the sequence (Y_k) be a rearrangement of (X_k), such that

$$(Y_k) = (X_1, X_2, X_4, X_3, X_6, X_5, X_{16}, X_6, X_{25}, X_7,...)$$

That is,

$$(Y_k) = X \left(\frac{k+1}{2} \right)^2$$

for all k odd.

$$= X \left(\frac{2n+k}{2} \right)^2$$

for all k even n satisfies $n(n-1) < \frac{k}{2} \leq n(n+1)$, $n \in N$.

Then for $k=1$, we have

$$[\Delta Y_1]^\alpha = [X_1]^\alpha - [X_2]^\alpha = [-0.5,1] \text{ for each } \alpha \in (0,1].$$

For $k > 1$ odd and $n \in N$ satisfying $n(n-1) < \frac{k}{2} \leq n(n+1)$ we have,

$$[\Delta Y_k]^\alpha = \left[X \left(\frac{k+1}{2} \right)^2 \right]^\alpha - \left[X \left(\frac{n+k+1}{2} \right)^2 \right]^\alpha$$

$$= \left[-\left(\sum_{r=0}^{\frac{k+1}{2}-1} \frac{1}{2r} + \frac{1}{k+1} \right)^2, -\left(\sum_{r=0}^{\frac{k+1}{2}-1} \frac{1}{2r} + \frac{1}{k+1} \right)^2 + \frac{1}{n+k+1} \right] \text{ for all } \alpha \in (0,1].$$

For k even and $n \in N$ satisfying $n(n-1) < \frac{k}{2} \leq n(n+1)$ we have,

$$[\Delta Y_k]^\alpha = \left[X \left(\frac{n+k}{2} \right)^2 \right]^\alpha - \left[X \left(\frac{k+2}{2} \right)^2 \right]^\alpha$$
\[
\Delta Y_k(t) = \begin{cases}
1, & \text{if } 0.2759 \leq t \leq 0.7200 \\
0, & \text{otherwise.}
\end{cases}
\]
for \(k > 3 \) and \(k \) is even and decreases for \(k > 3 \) and \(k \) odd. Therefore the sequence cannot converge to a point.

Hence \((Y_k) \notin (c_i^0)^F(M, \Delta) \Rightarrow (c_i^0)^F(M, \Delta) \). This completes the proof.

PROOF OF THEOREM 3.2: We prove the result for \((c_i^0)^F(M, \Delta)\). For the other spaces the result can be proved similarly. Let \((X_k) \in (c_i^0)^F(M, \Delta)\) and \((Y_k)\) be such that \(|X_k| \leq |Y_k| \), for all \(k \in N \). Then for given \(\varepsilon > 0 \),

\[
A = \left\{ k \in N : M\left(\frac{d(\Delta X_k, 0)}{r} \right) \geq \varepsilon, \text{ for some } r > 0 \right\} \in I.
\]

Since \(M \) is increasing, \(B = \left\{ k \in N : M\left(\frac{d(\Delta Y_k, 0)}{r} \right) \geq \varepsilon, \text{ for some } r > 0 \right\} \subseteq A \).

Thus \(B \in I \) and so \((Y_k) \in (c_i^0)^F(M, \Delta)\). Hence \((c_i^0)^F(M, \Delta)\) is solid.

PROOF OF PROPERTY 3.2: The proof is given by the following example:

EXAMPLE 3.2: Let \(I = I_5 \) and \(M(x) = x \). Consider the sequence \((X_k) \in (c_i^0)^F(M, \Delta) \subset (c_i^0)^F(M, \Delta)\) as:

For \(k \neq i^2, i \in N \)

\[
X_k(t) = \begin{cases}
1, & \text{if } 0 \leq t \leq k^{-1}, \\
0, & \text{otherwise.}
\end{cases}
\]

and for \(k = i^2, i \in N \), \(X_k(t) = 0 \).

Then for \(\alpha \in (0,1] \) we have,
\[
[X_k]^n = \begin{cases}
[0,0], & \text{if } k = i^2, \\
[0,k^{-1}], & \text{if } k \neq i^2 .
\end{cases}
\]

and
\[
[\Delta X_k]^n = \begin{cases}
[-(k+1)^{-1}, 0], & \text{for } k = i^2 \\
[0,k^{-1}], & \text{for } k = i^2 - 1 \text{ with } i \neq 1 \\
[-(k+1)^{-1},k^{-1}], & \text{otherwise}.
\end{cases}
\]

Hence \(\Delta X_k \to 0 \) as \(k \to \infty \). Thus \((X_k) \in (c_0^I) (M, \Delta) \subset \left(c^I \right)^F (M, \Delta) \)

Let \((Y_k) \) be another sequence such that

For \(k \neq i^2, i \in N \),
\[
Y_k(t) = \begin{cases}
1, & \text{if } 0 \leq t \leq k, \\
0, & \text{otherwise}.
\end{cases}
\]

and for \(k = i^2, i \in N \), \(Y_k(t) = 0 \).

Now for all \(\alpha \in (0,1) \) we have,
\[
[Y_k]^n = \begin{cases}
[0,0], & \text{if } k = i^2, \\
[0,k], & \text{if } k \neq i^2 .
\end{cases}
\]

and
\[
[\Delta Y_k]^n = \begin{cases}
[-(k+1),0], & \text{for } k = i^2 \\
[0,k], & \text{for } k = i^2 - 1 \text{ with } i \neq 1 \\
[-(k+1),k], & \text{otherwise}.
\end{cases}
\]

This implies, \((Y_k) \notin (c_0^I) (M, \Delta) \subset \left(c^I \right)^F (M, \Delta) \)

Hence \(\left(c^I \right)^F (M, \Delta), (c_0^I) (M, \Delta) \) are not convergence free. Similarly the other spaces also.

PROOF OF THEOREM 3.3: Let \(Z = c^{I(F)} \) and \(X_k \in (c_0^I) (M, \Delta) \). Then
\[
\left\{ k : M\left(\frac{d(X_k,L)}{r} \right) \geq \varepsilon, \text{ for some } r > 0 \right\} \in I.
\]

By continuity of \(M_2 \), for \(\varepsilon > 0 \) there exist \(\eta > 0 \) such that \(M_2(\varepsilon) = \eta \).
The result follows from

\[M_2 \left(M_1 \left(\frac{d(\Delta X_k, L)}{r} \right) \right) \geq M_2(\epsilon) = \eta. \]

PROOF OF THEOREM 3.4: The proofs are obvious, so omitted.