List of Figures

Fig. 1.1 Major tasks in shape analysis.
Fig. 1.2 Classification of shape representation techniques.
Fig. 2.1 An instance of shape feature extraction using shape region information.
Fig. 2.2 A model shape represented by a multi-interval valued feature vector obtained from shape region information.
Fig. 2.3 Feature vectors representing shapes using their shape region information.
Fig. 2.4 A model shape represented by a multi-interval valued feature vector obtained from shape region and background region information.
Fig. 2.5 Feature vectors representing the shapes of Fig. 2.3 using their shape region and background region information.
Fig. 2.6 Feature vectors representing shapes (whose axis of least inertia do not lie completely inside) using their shape region and background region information.
Fig. 2.7 A triangle.
Fig. 2.8 An instance of shape feature extraction using fuzzy equilateral triangle membership function.
Fig. 2.9 A model shape represented by a multi-interval valued feature vector obtained using the fuzzy equilateral triangle membership function.
Fig. 2.10 Feature vectors representing the shapes of Fig. 2.6 using fuzzy equilateral triangle membership function.
Fig. 2.11 Ten example shapes.
Fig. 3.1 A Similarity matrix for nine shapes.
Fig. 3.2(a) Category wise classification accuracy obtained for the representation scheme-1 (Section 2.2.2.1).
Fig. 3.2(b) Category wise classification precision obtained for the representation scheme-1 (Section 2.2.2.1).
Fig. 3.2(c) Category wise classification recall obtained for the representation scheme-1 (Section 2.2.2.1).

Fig. 3.3(a) Category wise classification accuracy obtained for the representation scheme-2 (Section 2.2.2.2).

Fig. 3.3(b) Category wise classification precision obtained for the representation scheme-2 (Section 2.2.2.2).

Fig. 3.3(c) Category wise classification recall obtained for the representation scheme-2 (Section 2.2.2.2).

Fig. 3.4(a) Category wise classification accuracy obtained for the representation scheme-3 (Section 2.2.2.3).

Fig. 3.4(b) Category wise classification precision obtained for the representation scheme-3 (Section 2.2.2.3).

Fig. 3.4(c) Category wise classification recall obtained for the representation scheme-3 (Section 2.2.2.3).

Fig. 3.5 Precision-Recall graphs for the selected shape categories for all the three representation schemes.

Fig. 4.1 Patterns with neighbourhood information.

Fig. 4.2 Dendrogram of clusters obtained by Gowda and Krishna (1977) algorithm.

Fig. 4.3 Dendrogram of clusters obtained by the proposed K-MNN algorithm.

Fig. 4.4 Various stages of clustering.

Fig. 5.1 Three model shapes represented by multi-interval valued feature vectors.

Fig. 5.2 Three query shapes represented by multi-valued feature vectors.

Fig. 5.3 Selected results of shape retrieval using shape representation scheme-1 (Section 2.2.2.1).

Fig. 5.4 Category wise average precision-recall rate obtained using representation scheme-1 (Section 2.2.2.1).

Fig. 5.5 Precision-recall graph obtained for the entire database using representation scheme-1 (Section 2.2.2.1).

Fig. 5.6 Selected results of shape retrieval using shape representation scheme-2 (Section 2.2.2.2).
Fig. 5.7 Category wise average precision-recall rate obtained using shape representation scheme-2 (Section 2.2.2.2).

Fig. 5.8 Precision-recall graph obtained for the entire database using shape representation scheme-2 (Section 2.2.2.2).

Fig. 5.9 Selected results of shape retrieval using shape representation scheme-3 (Section 2.2.2.3).

Fig. 5.10 Category wise average precision-recall rate obtained using shape representation scheme-3 (Section 2.2.2.3).

Fig. 5.11 Precision-recall graph for the entire database using shape representation scheme-3 (Section 2.2.2.3).

Fig. 5.12 Instance of feature extraction with (a) holes and (b) without holes.

Fig. 5.13 Ten additional categories of shapes without inner details.

Fig. 5.14 Selected results of shape matching for queries with inner details.

Fig. 5.15 Selected results of shape matching for queries without inner details.

Fig. 5.16 Retrieval results on transformed queries using shape representation scheme-1 (Section 2.2.2.1).

Fig. 5.17 Retrieval results on some minor occluded and deformed queries using shape representation scheme-1 (Section 2.2.2.1).

Fig. 5.18 Precision - recall curve for varying values of n.

Fig. 5.19 Pictorial representation of Table 5.4.

Fig. 6.1 A shape curve with identified dominant points.

Fig. 6.2 Shapes with dominants points possessing same spatial relationships.

Fig. 6.3 Example model shapes with tri-interval valued feature vectors.

Fig. 6.4 A query shape with tri-valued feature vector.

Fig. 6.5 Forty animal shapes used in the experiment.

Fig. 6.6 Selected results for some occluded and partial queries on animal shapes.

Fig. 6.7 Selected results for some isolated queries on animal shapes.

Fig. 6.8 Thirty real object shapes used in the experiment.
Fig. 6.9 Selected results for some isolated queries on real object shapes.

Fig. 6.10 Selected results for some occluded and partial queries on real object shapes.

Fig. 7.1 Accuracy of shape classification using Zernike moments based shape representation and the proposed shape representation schemes.

Fig. 7.2 Precision of shape classification obtained for Zernike moments based shape representation and the proposed three shape representation schemes.

Fig. 7.3 Recall of shape classification obtained for Zernike moments based shape representation and the proposed three shape representation schemes.

Fig. 7.4 Precision-Recall graphs of the proposed retrieval methods and Zernike moments based method.

Fig. 7.5 Shapes used in the experiment by Bernier and Landry (2003).

Fig. 7.6 Examples of shape matching by Bernier and Landry (2003).

Fig. 7.7 Examples of shape matching by the proposed representation scheme-1.

Fig. 7.8 Examples of shape matching by the proposed representation scheme-2.

Fig. 7.9 Examples of shape matching by the proposed representation scheme-3.

Fig. 7.10 Precision-Recall graphs of the proposed retrieval methods and Bernier and Landry (2003) method.

Fig. 7.11 Precision-Recall gain for Iris data.

Fig. 7.12 Precision-Recall gain for Zoo data.

Fig. 7.13 Precision-Recall gain for Wine data.

Fig. 7.14 Dendrogram representation of the clusters formation for fat-oil data.

Fig. 7.15 Dendrogram representation of the clusters formed for Microcomputer data.