List of Figures

Figure 1.1: Plot of energy band gap against lattice parameter for some common semiconductors .. 5

Figure 1.2: Illustration of the wurtzite crystal structure 10

Figure 1.3: Energy band diagram of individual metal and semiconductor (a) with $\phi_m > \chi_s$ (b) with $\phi_m < \chi_s$ 15

Figure 1.4: Energy band diagram for intimate metal-semiconductor (a) with $\phi_m > \chi_s$ (rectifying) and (b) with $\phi_m < \chi_s$ (ohmic) 18

Figure 1.5: Energy Band diagram for interface state model 21

Figure 1.6: Schematics of band diagrams and carrier transport mechanism in metal-n-type semiconductor 24

Figure 1.7: A schematic of TLM test structure 26

Figure 1.8: A plot of the total resistance (R_T) as a function of spacing between pads (d) .. 27

Figure 1.9: Schematic diagram showing the C-TLM pattern 28

Figure 2.1: The process of Auger electron emission 40

Figure 2.2: Schematic of Auger depth profiling 40

Figure 2.3: X-ray diffraction by a crystal 41

Figure 2.4: Schematic of atomic force microscope 42

Figure 2.5: Secondary electron emission in scanning electron microscopy .. 45

Figure 2.6: Energy-band diagram of metal n-type semiconductor 47

Figure 3.1: The typical I-V characteristics of Pt/Ag/Au contacts on p-type GaN as a function of annealing temperature, measured between the CTLM pads with a spacing of 6 μm 57
Figure 3.2: Plots of the measured total resistance (R_t) versus the spacing between the CTLM pads as a function of temperature ...57

Figure 3.3: AES depth profiles of the Pt/Ag/Au ohmic contacts on p-type GaN before and after annealing: (a) as-deposited, and (b) annealed at 800 °C ..58

Figure 3.4: X-ray diffraction plots of the Pt/Ag/Au ohmic contacts to p-type GaN before and after annealing: (a) as-deposited, and (b) annealed at 800 °C ..60

Figure 3.5: AFM images of the Pt/Ag/Au contacts on p-type GaN before and after annealing: (a) as-deposited, and (b) annealed at 800 °C ...61

Figure 3.6: The I-V characteristics of the Ti (12nm)/W (20nm)/Au (50nm) contacts on n-type GaN as a function of the annealing temperature ..68

Figure 3.7: Plot of $F(V)$ versus V for Ti/W/Au contacts. It is shown that annealing leads to a large reduction (by ~160 meV) in the SBHs for Ti/W/Au contacts, compared with that of the as-deposited contacts ...69

Figure 3.8: Plot of $I/[1-\exp(-qV/kT)]$ versus V for Ti/W/Au contacts. It is shown that annealing leads to a large reduction (by ~160 meV) in the SBHs for Ti/W/Au contacts, compared with that of the as-deposited contacts ...70

Figure 3.9: AES depth profiles of the Ti/W/Au ohmic contacts to n-GaN: (a) as-deposited, (b) after annealing at 750 °C and (c) after annealing at 900 °C ...72

Figure 3.10: Glancing angle XRD plots of the Ti/W/Au contacts: (a) annealed at 550 °C and (b) annealed at 900 °C73

Figure 3.11: Typical HERM image for the Ti/W/Au contact to n-GaN after annealing at 900 °C ...74

Figure 3.12: (a) STEM images obtained from the Ti/W/Au contact on n-GaN after annealing at 900 °C (b) EDX line profile spectra
showing the element distribution across the contact after annealing at 900 °C ..75

Figure 3.13: The specific contact resistance of the Ti/W/Au contacts as a function of the annealing time at 900 °C76

Figure 3.14: The AFM images of the Ti/W/Au contacts on n-GaN: (a) as-deposited and (b) after annealing at 900 °C77

Figure 3.15: Schematic energy-band diagram for the metal-semiconductor interface: (a) conduction and valence bands without band bending, and (b) conduction and valence bands with band bending due to the presence of nitrogen vacancies V_N...78

Figure 4.1: Current-voltage characteristics of Rh Schottky contacts on n-type GaN as a function of annealing temperatures.........87

Figure 4.2: Current-voltage characteristics of Rh/Au Schottky contacts on n-type GaN as a function of annealing temperatures....87

Figure 4.3: The plot of $I/[1-\exp(-qV/kT)]$ against. V for Rh Schottky contacts annealed at different temperatures89

Figure 4.4: The plot of $I/[1-\exp(-qV/kT)]$ against. V for Rh/Au Schottky contacts annealed at different temperatures89

Figure 4.5: Plot of $F(V)$ versus V for the Rh Schottky contacts annealed at different temperatures.................................90

Figure 4.6: Plot of $F(V)$ versus V for the Rh/Au Schottky contacts annealed at different temperatures.................................90

Figure 4.7: A plot of $1/C^2$ versus V for Rh Schottky contacts annealed at different temperatures.......................................92

Figure 4.8: A plot of $1/C^2$ versus V for Rh/Au Schottky contacts annealed at different temperatures.......................................92

Figure 4.9: The barrier heights and diode ideality factors of Rh Schottky contact as a function of annealing temperature..............96
Figure 4.10: The barrier heights and diode ideality factors of Rh/Au Schottky contact as a function of annealing temperature...96

Figure 4.11: Auger depth profile of the Rh/Au Schottky contact to n-type GaN: (a) as-deposited, (b) annealed at 400 °C, and (c) annealed at 500 °C...98

Figure 4.12: The XRD plot of the Rh/Au Schottky contact to n-type GaN: (a) as-deposited sample (b) 400 °C annealed sample and (c) 500 °C annealed sample...99