Chapter V

ON A CONJECTURE OF ANDREWS
CHAPTER - V

ON A CONJECTURE OF ANDREWS

5.1. Introduction

Theorem 5.1 [4, Th.2]: If $A, k,$ and a are positive integers with $\frac{k}{2} \leq a \leq k$, $k \geq 2\lambda - 1$ then for every positive integer, we have

$$A_{\lambda,k,a}(n) = B_{\lambda,k,a}(n).$$

Schur's theorem [32] is the case $\lambda = k = a = 2$. Hence it is not a particular case of Theorem 5.1 as $k \geq 2\lambda - 1$ is not satisfied. This lead Andrews [4] to conjecture that Theorem 5.1 may be still true if $k \geq \lambda$. In fact he [6] gave a proof of this result. Andrews [6] stated the following two conjectures.

\footnote{Chapter-V is mainly based on reference [25] which was presented at the 14th International Conference of the Jangjeon Mathematical Society held at Mysore during 22-24, December 2003.}
Conjecture 5.1: For $\frac{1}{2} < a \leq k < \lambda$, let

$$n^c = \frac{(k + \lambda - a + 1)(k + \lambda - a)}{2} + (k - \lambda + 1)(\lambda + 1)$$

Then,

$$B_{\lambda,k,a}(n) = A_{\lambda,k,a}(n) \quad \text{for} \quad 0 \leq n < n^c$$

and

$$B_{\lambda,k,a}(n) = A_{\lambda,k,a}(n) + 1 \quad \text{for} \quad n = n^c.$$

Conjecture 5.2: There holds the identity $A_{4,3,3}(n) = B_{4,3,3}^0(n)$ for all positive integers n, where $B_{4,3,3}^0(n)$ denotes the number of partitions of n enumerated by $B_{4,3,3}(n)$ with the added restrictions:

$$f_{5j+2} + f_{5j+3} \leq 1 \quad \text{for} \quad j \geq 0,$$

$$f_{5j+4} + f_{5j+6} \leq 1 \quad \text{for} \quad j \geq 0,$$

$$f_{5j-1} + f_{5j} + f_{5j+3} + f_{5j+4} + f_{5j+5} \leq 3 \quad \text{for} \quad j \geq 1,$$

where, as before, f_j denotes the number of appearances of j in the partition.

Conjecture 5.2 is designed to show that some partition identities can be obtained in a few cases when the condition $k \geq \lambda$ is removed with some additional restrictions on the summands. In the year 1994 Andrews et.al. [9] gave an analytical proof of Conjecture 5.2. Padmavathamma and Ruby Salestina,M [21] gave a combinatorial proof. These two authors and Sudarshan, S.R [22] first conjectured and then proved combinatorially the following result which is analogous to Conjecture 5.2.
Theorem 5.2: There holds the identity $A_{5,3,3}(n) = B_{5,3,3}^0(n)$ for all positive integers n, where $B_{5,3,3}^0(n)$ denotes the number of partitions of n enumerated by $A_{5,3,3}(n)$ with the added restrictions:

$$f_{6j+3} = 0 \quad \text{for} \quad j \geq 0,$$

$$f_{6j+2} + f_{6j+4} \leq 1 \quad \text{for} \quad j \geq 0,$$

$$f_{6j+5} + f_{6j+7} \leq 1 \quad \text{for} \quad j \geq 0,$$

$$f_{6j-1} + f_{6j} + f_{6j+6} + f_{6j+7} \leq 3 \quad \text{for} \quad j \geq 1.$$

In [29] Padmavathamma et.al. have given an analytic proof of Theorem 5.2.

Padmavathamma and T.G.Sudha [17] have proved the case $k = a$ of conjecture 5.1. Padmavathamma and Ruby Salestina.M [18] have established the case $k = a + 1$ and proved [20] that the conjecture is false for $k \geq a + 2$ if

$$n \quad \text{exceeds} \quad \left\{ \begin{array}{ll}
(2k - a - \frac{k}{2} + 1)(\lambda + 1) & \text{for even } \lambda \\
(4k - 2a - \lambda + 2)(\frac{\lambda + 1}{2}) & \text{for odd } \lambda
\end{array} \right.$$

by giving counter examples. They had also stated the following revised conjecture for a particular case when λ is even.

Conjecture 5.3 [Revised]: Let λ be even, $a - \frac{\lambda}{2} = 1$, $\theta = k - a$,

$$\frac{\theta(\theta - 1)}{2} < \left(a - \frac{\lambda}{2}\right)(\lambda + 1) \quad \text{and} \quad 0 \leq \theta \leq \frac{\lambda}{2} - 3.$$

Then,

$$B_{\lambda,k,a}(n) = A_{\lambda,k,a}(n) \quad \text{for} \quad n < (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1)$$
(5.2) \[B_{\lambda,k,a}(n) = A_{\lambda,k,a}(n) + B_{\lambda,k,a}(x) \]

where \(n = (2k - a - \frac{9}{2} + 1)(\lambda + 1) + x, \quad 0 \leq x \leq \frac{\theta(\theta - 1)}{2} \).

In Section 5.2 we give a proof of this revised conjecture.

5.2. Proof of the Revised Conjecture

Let \(P_{B_{\lambda,k,a}}(n) \) and \(P_{A_{\lambda,k,a}}(n) \) denote the set of partitions enumerated by \(B_{\lambda,k,a}(n) \) and \(A_{\lambda,k,a}(n) \) respectively. Let \(P_A'(n) \) [resp. \(P_B'(n) \)] denote the set of partitions enumerated by \(A_{\lambda,k,a}(n) \) [resp. \(B_{\lambda,k,a}(n) \)] but not by \(B_{\lambda,k,a}(n) \) [resp. \(A_{\lambda,k,a}(n) \)].

\[\pi \in P_A'(n) \] implies that it violates one of the conditions on \(f's \) or \(b's \).

Let \(S_j \ (j = 1, 2, \cdots, \frac{\lambda}{2}) \) denote the condition \(\sum_{i=j}^{\lambda-j+1} f_i \leq a-j \).

Let \(S \) denote the condition \(\sum_{i=1}^{\lambda+1} f_i \leq a-1 \) and let \(S' \) be the condition on \(b's \).

Let

\[(2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) \leq n < (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + \frac{\theta(\theta - 1)}{2} \]

where,

\[\frac{\theta(\theta - 1)}{2} < (a - \frac{\lambda}{2})(\lambda + 1) \quad \text{and} \quad \theta = k - a. \]

Then,

\[P_B'(n) = Q^1 \cup \cdots \cup Q^{a-1} \cup R(n) \]
where for $1 \leq i \leq a - 1$,

$$Q^i = \{ \pi \in P^i_P(n) : (a - \frac{\lambda}{2})(\lambda + 1) \text{ appears } i \text{ times} \}$$

and

$$R(n) = \{(2k-a-\frac{1}{2}+1)(\lambda+1)+\pi : \pi \text{ is a partition of } n-(2k-a-\frac{1}{2}+1)(\lambda+1) \text{ into parts with } C\}.$$

Here C stands for "subjected to the conditions in the definition of B".

Clearly, $\# R(n) = B_{\lambda,k,a}[n-(2k-a-\frac{1}{2}+1)(\lambda+1)].$

From the method explained in [17] and [18] it follows that the partitions violating $S_1, \ldots, S_\frac{a}{2}$ will be mapped onto $Q^1 \cup \cdots \cup Q^{a-1}$. If $a - \frac{1}{2} = 1$ then S reduces to S_1. As such any contribution to $R(n)$ can come only from those partitions of P^i_A which violate S^* but do not violate any of $S_1, \ldots, S_\frac{a}{2}$. If there are no partitions of n violating only S^* then for such n, we have

$$P^i_A(n) = \text{Union of the partitions violating } S_1, \ldots, S_\frac{a}{2}.$$

Let λ be even. $\pi \in P^i_A(n)$ implies that it violates one of the conditions on f's or b's. In [17] and [18] authors have shown that for

$$n < (2k-a-\frac{\lambda}{2}+1)(\lambda+1),$$

if a partition violates S^* then it violates S or S_1. However if

$$n \geq (2k-a-\frac{\lambda}{2}+1)(\lambda+1),$$

then there exist partitions which violate S^* but do not violate any of $S, S_1, \ldots, S_\frac{a}{2}$. For example when $\lambda = 14, k = 13, a = 8, \theta = 5, (2k-a-\frac{1}{2}+1)(\lambda+1) = 180.$
then \(n \) in conjecture 2 is 190.

\[
21 + \cdots + 16 + 14 + \cdots + 9 + 7
\]

\[
21 + \cdots + 16 + 14 + \cdots + 9 + 8
\]

are the partitions of 187 and 188 respectively which violate only \(S^* \).

Let us now investigate such partitions.

If a partition violates \(S^* \) then there exists a partition

\[
(5.3) \quad n = b_1 + \cdots + b_i + \cdots + b_{i+k-1} + \cdots + b_k + \cdots + b_s
\]

and an integer \(i \) with \(b_i - b_{i+k-1} < \lambda + 1 \). If \(b_{i+k-1} \geq \lambda + 1 \) then the number being partitioned is

\[
(5.4) \quad \geq (\lambda + x_k) + \cdots + (\lambda + x_1) + \cdots
\]

\[
\geq k(\lambda + 1) \quad \text{where } x_k - x_1 < \lambda + 1
\]

If (5.4) contains \(\lambda + 1 \) more than \((a - 1) \) times then it violates \(S \). Let \(x \) denote the number of \(\lambda + 1 \) in (5.4) and \(y \) denote the number of terms > \(\lambda + 1 \) so that \(x \leq a - 1 \) and \(x + y = k \). Then (5.4) becomes,

\[
x(\lambda + 1) + (\lambda + 2) + \cdots + (\lambda + k - x) = (k - 1)(\lambda + 1) + \frac{(k - x)(k - x - 1)}{2}.
\]

Let \(n^c \) denote the \(n \) in the conjecture.

If \(k = a + \theta \) then for

\[
0 \leq x' \leq \frac{\theta(\theta - 1)}{2}
\]
we have,

\[n = (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + x' \]

\[\leq n' = (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + \frac{\theta(\theta - 1)}{2} \]

\[= k(\lambda + 1) + (k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + \frac{(k-a)(k-a-1)}{2} \]

\[< k(\lambda + 1) + (k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + \frac{(k-x)(k-x-1)}{2} \]

\[\leq (k - 1)(\lambda + 1) + \frac{(k-x)(k-x-1)}{2} \quad \text{since } k - a - \frac{\lambda}{2} + 1 < 0. \]

Let \(b_{i+k-1} < \lambda + 1 \) and \(b_i < \lambda + 1 \). Then (5.3) contains at least \(k \) parts \(\leq \lambda \)

and hence \(\sum_{i=1}^{\lambda} f_i \geq k > a-1 \) which implies that such a partition violates \(S_1 \).

Let \(b_{i+k-1} < \lambda + 1 \) and \(b_i \geq \lambda + 1 \). If the number of parts among 1, 2, \(\cdots \), \(\lambda+1 \)

is \(\geq a \) then the partition violates \(S \) or \(S_1 \). Let \(\beta \) denote the number of parts among

1, 2, \(\cdots \), \(\lambda + 1 \). Then 1 \leq \(\beta \) \leq a - 1. Let \(\alpha \) denote the number of parts > \(\lambda + 1 \)

so that \(k - a + 1 \leq \alpha \leq k - 1 \). Then the number being partitioned is,

\[(5.5) \quad (\lambda + x_\alpha) + \cdots + (\lambda + x_1) + y_1 + \cdots + y_\beta \]

Since \(\lambda + x_\alpha - y_\beta < \lambda + 1 \), we have \(x_\alpha = y_\beta \).

Now \(x_1 \geq 2, x_2 \geq 3, \cdots, x_\alpha \geq a+1 \) Thus \(y_\beta \geq a+1, \cdots, y_1 \geq a+\beta = k \).

Hence (5.5) is,

\[\geq (\lambda + a + 1) + \cdots + (\lambda + 2) + (a + \beta) + \cdots + (a + 1) \]
\[= a(\lambda + 1) + \frac{(\alpha + \beta)(\alpha + \beta + 1)}{2}. \]

i) Let \(\beta = 1 \). Then (5.5) becomes,

\[(k - 1)(\lambda + 1) + \frac{k(k + 1)}{2} > (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + \frac{\theta(\theta - 1)}{2} = n^c \]

for their difference is

\[= \left[\frac{(\lambda - 2)}{2} - \theta\right] (\lambda + 1) + \frac{(k + \theta)(a + 1)}{2} > 0 \]

since, \(0 \leq \theta \leq \frac{1}{2} - 2 \) and \(k = a + \theta \).

Proceeding like this we arrive at the \((a - 1)^{th}\) step.

\(a - 1 \) Let \(\beta = a - 1 \). Then \(\alpha = k - a + 1 \). Let

\[S_1^* = \{k - a + 2, \ldots, \lambda - k + a - 1\}\]

and \[S_2^* = \{\lambda - k + a, \ldots, \lambda + 1\}\]

The number of terms in \(S_1^*\) and \(S_2^*\) are respectively \(\lambda - 2k + 2a - 2\) and \(k - a + 2\).

Since we have to choose \((a - 1)\) parts from \{1, 2, \ldots, \lambda + 1\} and \(k - a + 1\) parts > \(\lambda + 1\) for a partition violating \(S^*\); it is clear that the minimum part should be \(k - a + 2\). Hence we consider the condition

\[S_{k-a+2} : \sum_{j=k-a+2}^{\lambda-k+a-1} f_j \leq a - (k - a + 2) = 2a - k - 2.\]

If the number \(x\) of terms in \(S_1^*\) satisfies \((2a - k - 2) < x \leq (\lambda - 2k + 2a - 2)\) and the number \(y\) of terms in \(S_2^*\) satisfies \(x + y = a - 1\) then the partition violates \(S_{k-a+2}\).

Since the number \(y\) of terms in \(S_2^*\) is \(k - a + 2\) and we have to choose \(a - 1\) terms
from S_1^* and S_2^*, the minimum number in S_1^* is $(a-1) - (k-a+2) = 2a-k-3$.
Thus we are left with two choices for x namely $x = 2a-k-3$ and $x = 2a-k-2$.

In case of $S_{k-a+3}, \ldots, S_{\frac{3}{2}}$

$S_{k-a+3} : f_{k-a+3} + \cdots + f_{\lambda-k+a-2} \leq a - (k-a+3) = 2a-k-3$

$S_1^* = \{k-a+3, \ldots, \lambda-k+a\}$ \# $S_1^* = \lambda-2k+2a-2$

$S_2^* = \{\lambda-k+a+1, \ldots, \lambda+1\}$ \# $S_2^* = k-a+1$

$$2a-k-3 < x \leq \lambda-2k+2a-2$$

$(\lambda+1) - (k-a+3) + 1 = \lambda-k+a-1 \Rightarrow$ The total number of terms in S_1^* and S_2^*.

Number of terms in S_2^* is $k-a+1$ and we have to choose $a-1$ terms from S_1^* and S_2^*, the minimum number in S_1^* is

$$(a-1) - (k-a+1) = 2a-k-2$$

$\Rightarrow x > 2a-k-3 \Rightarrow$ it violates S_{k-a+3}.

Similarly we can say for S_{k-a+4} and so on.

Let $x = (2a-k-3)$ and let

$$A = \{(k-a+2) + \cdots + [(k-a+2) + (2a-k-4)]\}$$

$$+ \{(\lambda-k+a) + \cdots + [\lambda-k+a) + (k-a+1)]\}$$

$$= (k-a+2)(2a-k-3) + \frac{(2a-k-4)(2a-k-3)}{2}$$

$$+ (\lambda-k+a)(k-a+2) + \frac{(k-a+1)(k-a+2)}{2}$$

\]
and \[B = \{(\lambda + 1 + 1) + \cdots + [(\lambda + 1) + (k - a + 1)]\} = (\lambda + 1)(k - a + 1) + \frac{(k - a + 1)(k - a + 2)}{2} \]

Then,
\begin{equation}
A + B - n^c = 2ak + \frac{\lambda^2}{2} + \frac{5\lambda}{2} + 2 - k^2 - \frac{a^2}{2} - k - \lambda a - \frac{3a}{2}.
\end{equation}

Let \(x = 2a - k - 2 \). Then analogous to (5.6) we get,
\begin{equation}
A^* + B^* - n^c = 2ak + \frac{\lambda^2}{2} + \frac{5\lambda}{2} + 2 - k^2 - \frac{a^2}{2} - k - \lambda a - \frac{3a}{2} - (\lambda - a + 2).
\end{equation}

Lemma 5.1: Let \(a - \frac{\lambda}{2} = 1 \)

and let \(\frac{\theta(\theta - 1)}{2} < (\lambda + 1) \).

For \(0 \leq \theta \leq \frac{\lambda}{2} - 3 \) there are no partitions of \(n \) violating only \(S^* \).

Proof: Putting \(k = a + \theta \), (5.7) reduces to
\begin{equation}
A^* + B^* - n^c = (\lambda - a)(\lambda - a + 3) - 2\theta(\theta + 1)
\end{equation}

For \(\theta = 0, 1, 2 \), (5.8) \(> 0 \).

Proceeding like this we arrive at the value of \(\theta = \frac{\lambda}{2} - 3 \).

Now consider,
\[\frac{\theta(\theta - 1)}{2} - (\lambda + 1) = \frac{1}{8}(\lambda^2 - 22\lambda + 40) \geq 0 \quad \text{for} \quad \lambda \geq 20. \]
Hence, when $\theta = \frac{1}{2} - 3$ we have
\[
\frac{\theta(\theta - 1)}{2} < (\lambda + 1) \text{ for } \lambda \leq 18.
\]
But it is easy to see that (5.8) > 0 for $\lambda \leq 18$, $\theta = \frac{1}{2} - 3$, and $k = \lambda - 2$.
This proves Lemma 5.1.

Lemma 5.2: Cardinality of $Q^1 \cup Q^2 \cup \cdots \cup Q^{n-1} = \text{Cardinality of } P_A' (n)$
under the conditions of the Revised conjecture.

Proof: $\pi \in P_A' (n)$ implies that it violates one of the conditions $S_0, \cdots, S_{\frac{1}{2}}, S, S^*$. Since $a = \frac{1}{2} = 1$, S reduces to S_1. In Lemma 5.1, we have proved that there are no partitions of n violating only S^*. Thus $\pi \in P_A' (n)$ implies that it violates one of the conditions $S_1, \cdots, S_{\frac{1}{2}}$. We now give the bijection from $P_A' (n)$ onto the set $X_B(n)$ of partitions enumerated by $Q^1 \cup Q^2 \cup \cdots \cup Q^{n-1}$.

Bijection from $P_A' (n)$ onto $X_B(n)$

Definition 5.1: A pair (α, β) shall be called a P-pair if $\alpha < \beta$ and $\alpha + \beta = \lambda + 1$.

Definition 5.2: We say that a P-pair (α_1, β_1) in a partition π is Connected to another P-pair (α_2, β_2) if
\[
\begin{align*}
(5.9) \quad & \alpha_1 < \alpha_2 \quad \text{and} \quad (\alpha_1 + 1 \text{ or } \beta_1 - 1) \quad \text{and} \quad (\alpha_1 + 2 \text{ or } \beta_1 - 2) \cdots \\
& \quad \text{and} \quad (\alpha_2 - 1 \text{ or } \beta_2 + 1) \quad \text{are present in } \pi.
\end{align*}
\]
Here onwards all the examples will be illustrated for the following values of λ, k, a.

\[(5.10) \quad \lambda = 14, \ k = 12, \ a = 8.\]

Here $\theta = k - a = 4$ satisfies

\[
\frac{\theta(\theta - 1)}{2} = \frac{4 \cdot 3}{2} = 6 < \frac{a}{2}(\lambda + 1) = 15
\]

and $0 < \theta \leq \frac{3}{2} - 3 = 7 - 3 = 4$ and hence conditions in the Revised conjecture are satisfied.

The conditions S, S_1, \ldots, S_7 are:

- $S : f_1 + f_2 + \cdots + f_{14} + f_{15} \leq 7$
- $S_1 : f_1 + f_2 + \cdots + f_{13} + f_{14} \leq 7$
- $S_2 : f_2 + f_3 + \cdots + f_{12} + f_{13} \leq 6$
- $S_3 : f_3 + f_4 + \cdots + f_{11} + f_{12} \leq 5$
- $S_4 : f_4 + f_5 + \cdots + f_{10} + f_{11} \leq 4$
- $S_5 : f_5 + f_6 + \cdots + f_9 + f_{10} \leq 3$
- $S_6 : f_6 + f_7 + f_8 + f_9 \leq 2$
- $S_7 : f_7 + f_8 \leq 1$

eg: In a partition π, the P-pair $(2, 13)$ is connected to the P-pair $(5, 10)$ if $(3 \text{ or } 12)$ and $(4 \text{ or } 11)$ are parts of π.

Mapping from $P'_A(n)$ to $X_B(n)$

Let $\pi \in P'_A(n)$. Find the greatest α say α_1 in π such that S_{α_1} is violated. This implies that α_1 and $\lambda + 1 - \alpha_1 = \beta_1$ are parts in π. Including the P-pair (α_1, β_1) replace all the P-pairs connected to (α_1, β_1) with $\lambda + 1$. Let the resulting partition be π'.
Let \(\pi' = (\lambda + 1)j + \beta_i + \cdots + \alpha_k \).

Let \(\alpha_m \) be the least among the replaced (with \(\lambda + 1 \)) P-pairs. Then look for the greatest \(\alpha_i \) (\(\alpha_i < \alpha_m \)) such that the number of elements from \(\alpha_i \) to \(\beta_i \) is \(\geq a - \alpha_i + 1 - j \). Including the P-pair \((\alpha_i, \beta_i) \) replace all the P-pairs connected to \((\alpha_i, \beta_i) \). Repeat the procedure as long as we get such P-pair \((\alpha_i, \beta_i) \). The resulting partition \(\psi \in X_B(n) \).

eg 1: \(\pi = 14 + 13 + 12 + 11 + 10 + 8 + 7 + 5 + 4 + 3 + 2 + 1 \)

Here \(S_7 \) is violated. There are no P-pairs connected to \((7, 8) \) since neither 6 nor 9 is a part in \(\pi \). Thus we replace only \((7, 8) \).

\[
\pi \rightarrow \pi' = 15 + 14 + 13 + 12 + 11 + 10 + 5 + 4 + 3 + 2 + 1.
\]

Here \(j = 1. \) 7 is the least \(\alpha \) among the replaced P-pairs. And 4 is the greatest \(\alpha \) (\(4 < 7 \)), such that the number of elements from 4 to 11 is \(4 \geq 4 = a - 4 + 1 - j \).

The P-pairs \((3, 12), (2, 13), (1, 14) \) are all connected to \((4, 11) \). Hence we replace them including \((4, 11) \) by 15. The resulting partition is

\[
\psi = 15 + 15 + 15 + 15 + 10 + 5.
\]

We associate \(\pi \) to \(\psi \in X_B(n) \).

eg 2: \(\pi = 14 + 11 + 10 + 8 + 7 + 4 + 1 \)

Here \(S_7 \) is violated. There are no P-pairs connected to \((7, 8) \) since neither 6 nor 9 is a part in \(\pi \). Thus we replace only \((7, 8) \).

\[
\pi \rightarrow \pi' = 15 + 14 + 11 + 10 + 4 + 1.
\]

Here \(j = 1. \) 7 is the least \(\alpha \) among the replaced P-pairs. There is no \(\alpha < 7 \) in the partition such that the number of elements between \(\alpha \) to \(\beta \) is \(\geq (a - \alpha + 1 - j) \).
So we stop here. The resulting partition is

\[\psi = 15 + 14 + 11 + 10 + 4 + 1. \]

We associate \(\pi \) to \(\psi \in X_B(n) \).

eg 3: \(\pi = 12 + 11 + 10 + 5 + 4 + 3 \)

Here \(S_3 \) is violated. There are no P-pairs connected to \((3, 12)\). Thus we replace only \((3, 12)\).

Since there is no P-pair \((\alpha, \beta)\) present such that \(\alpha < 3\) we stop here. The resulting partition is

\[\psi = 15 + 11 + 10 + 5 + 4. \]

We associate \(\pi \) to \(\psi \in X_B(n) \).

eg 4: \(\pi = 13 + 12 + 10 + 9 + 8 + 7 + 6 + 5 + 3 + 2 \)

Here \(S_7 \) is violated. The P-pairs \((6, 9), (5, 10)\) are connected to \((7, 8)\). Therefore

\[\pi \rightarrow \pi' = 15 + 15 + 15 + 13 + 12 + 3 + 2. \]

Here \(j = 3 \). 5 is the least \(\alpha \) among the added P-pairs. And 2 is the greatest \(\alpha \) (\(2 < 5 \)), such that the number of elements from 2 to 13 is \(4 \geq 4 \) \((= a - 2 + 1 - j)\). Hence we replace \((2, 13)\) by 15. The resulting partition is

\[\psi = 15 + 15 + 15 + 15 + 12 + 3 \]

we associate \(\pi \) to \(\psi \in X_B(n) \).
Reverse Mapping from $X_B(n)$ to $P'_A(n)$

Let $\psi \in X_B(n)$. List the P-pairs (α, β) vertically one by one

$$(\alpha_1, \beta_1)$$

$$(\alpha_2, \beta_2)$$

...

$$(\alpha_n, \beta_n)$$

where $\alpha_i < \alpha_j$ for $i < j$ and neither α_i nor β_i for $1 \leq i \leq n$ is a part in ψ.

Strike out the P-pair (α_k, β_k) from the list if there is a P-pair connected to (α_k, β_k) in the given partition ψ. Strike out the P-pairs (α_k, β_k) and $(\alpha_{k+1}, \beta_{k+1})$ from the list if there are two P-pairs connected to (α_k, β_k). Likewise strike out the P-pairs (α_k, β_k) to $(\alpha_{k+i}, \beta_{k+i})$ from the list if there are $l + 1$ P-pairs connected to (α_k, β_k).

Let the number of $(\lambda + 1)$ in ψ be j. Starting with the j^{th} P-pair from the top of the list look for the P-pair (α, β) such that the replacement of that P-pair in place of a $(\lambda + 1)$ would violate the condition S_α. We replace j P-pairs which are immediately above the P-pair (α, β) including the P-pair (α, β) with j times $(\lambda + 1)$. The resulting partition $\pi \in P'_A(n)$.

eg 1 : $\psi = 15 + 15 + 15 + 15 + 15 + 10 + 5$ Here $j = 5$.
We list the P-pairs \((\alpha, \beta)\) vertically one by one where neither \(\alpha\) nor \(\beta\) is a part in \(\psi\).

\[
(1, 14) \\
(2, 13) \\
(3, 12) \\
(4, 11) \\
(6, 9) \\
(7, 8)
\]

Since there is a P-pair \((5, 10)\) in \(\psi\) which is connected to the P-pair \((6, 9)\) in the list we strike out the P-pair \((6, 9)\).

Thus we are left with the P-pairs

\[
(1, 14) \\
(2, 13) \\
(3, 12) \\
(4, 11) \\
(7, 8)
\]

From the top the 5\(^{th}\) \((j = 5)\) pair is \((7, 8)\) and it violates \(S_7\). Hence we replace five 15's in the partition by the pairs

\[
(1, 14), \ (2, 13), \ (3, 12), \ (4, 11), \ (7, 8)
\]

The resulting partition is

\[
\pi = 14 + 13 + 12 + 11 + 10 + 8 + 7 + 5 + 4 + 3 + 2 + 1.
\]

We associate \(\psi\) to \(\pi \in \mathcal{P}_A(n)\).
eg 2 : \[\psi = 15 + 14 + 11 + 10 + 4 + 1 \] Here \(j = 1 \).

We list the P-pairs \((\alpha, \beta)\) vertically one by one

\[
(2, 13) \\
(3, 12) \\
(6, 9) \\
(7, 8)
\]

Since there is a P-pair \((4, 11)\) in \(\psi\) which is connected to the P-pair \((6, 9)\) in the list we strike out the P-pair \((6, 9)\) and since there is a P-pair \((1, 14)\) in \(\psi\) which is connected to the P-pair \((2, 13)\) in the list we strike out the P-pair \((2, 13)\). Thus we are left with the pairs

\[
(3, 12) \\
(7, 8)
\]

From the top the 1st \((j = 1)\) pair is \((3, 12)\) but the replacement does not violates \(S_3\). Since the replacement of the P-pair \((7, 8)\) violates \(S_7\) we replace 15 in the partition by the P-pair \((7, 8)\). The resulting partition is

\[\pi = 14 + 11 + 10 + 8 + 7 + 4 + 1. \]

We associate \(\psi\) to \(\pi \in \mathcal{P}_A(n)\).

eg 3 : \[\psi = 15 + 11 + 10 + 5 + 4 \] Here \(j = 1 \).

We list the P-pairs \((\alpha, \beta)\) vertically one by one

\[
(1, 14) \\
(2, 13) \\
(3, 12)
\]
Since there are two P-pairs (5, 10) and (4, 11) in \(\psi \) which are connected to the P-pair (6, 9) in the list we strike out the P-pairs (6, 9) and (7, 8).

Thus we are left with the P-pairs

\[
(1, 14) \\
(2, 13) \\
(3, 12)
\]

From the top the 1st \(j = 1 \) P-pair is (1, 14) but the replacement does not violates \(S_1 \). Since the replacement of the P-pair (3, 12) violates \(S_3 \) we replace 15 in the partition by the P-pair (3, 12).

The resulting partition is

\[
\pi = 12 + 11 + 10 + 5 + 4 + 3.
\]

We associate \(\psi \) to \(\pi \in P_4'(n) \).

eg 4: \(\psi = 15 + 15 + 15 + 15 + 12 + 3 \) \hspace{1cm} Here \(j = 4 \).

We list the P-pairs \((\alpha, \beta)\) vertically one by one

\[
(1, 14) \\
(2, 13) \\
(4, 11) \\
(5, 10) \\
(6, 9) \\
(7, 8)
\]
Since there is a P-pair $(3, 12)$ in ψ which is connected to the P-pair $(4, 11)$ in the list we strike out the P-pair $(4, 11)$. Thus we are left with the P-pairs

$$(1, 14)$$

$$(2, 13)$$

$$(5, 10)$$

$$(6, 9)$$

$$(7, 8)$$

From the top the 4^{th} $(j = 4)$ P-pair is $(6, 9)$ but the replacement does not violate S_6. Since the replacement of the P-pair $(7, 8)$ violates S_7 we replace four 15’s in the partition by the P-pairs

$$(2, 13), (5, 10), (6, 9), (7, 8)$$

The resulting partition is

$$\pi = 13 + 12 + 10 + 9 + 8 + 7 + 6 + 5 + 3 + 2.$$

We associate ψ to $\pi \in P_4'(n)$.

This proves Lemma 5.2.

For $n < (2k - a - \frac{1}{2} + 1)(\lambda + 1)$,

$$B_{\lambda, k, a}(n) = \{Q^1 \cup, \cdots, \cup Q^{a-1}\}$$

$\quad = \text{Cardinality of } P_4'(n)$

$\quad = A_{\lambda, k, a}(n)$
when \(n = (2k - a - \frac{\lambda}{2} + 1)(\lambda + 1) + x, \quad 0 \leq x \leq \frac{\theta(\theta - 1)}{2} \)

\[
B_{\lambda,k,a}(n) = \{Q^1 \cup, \cdots, \cup Q^{a-1}\} \cup R(n)
\]

where \(R(n) \) has already been defined. Since \(R(n) = B_{\lambda,k,a}(x) \) proof of the Revised conjecture follows from Lemma 5.2.