1.7.2.3.1. Location of the stationary point
1.7.2.3.1.2. Search methods
1.7.2.3.1.3. Overlay plots
1.7.2.3.2. Mathematical optimization
1.7.2.3.2.1. Desirability functions
1.7.2.3.2.2. Sequential search methods
1.7.2.4. Selection of optimum search methodology

1.8. PHARMACOKINETIC ANALYSIS AND MODELING
1.8.1. One Compartmental Body Model
1.8.2. Non-compartmental pharmacokinetics
1.8.2.1. Statistical moment approach

1.9. IN VITRO/IN VIVO CORRELATIONS (IVIVC)
1.9.1. Significance of IVIVC
1.9.2. IVIVC model development
1.9.3. Levels of IVIVC
1.9.3.1. Level A IVIVC
1.9.3.2. Level B IVIVC
1.9.3.3. Level C IVIVC
1.9.3.4. Multiple Level C correlation
1.9.3.5. Level D correlation
1.9.4. IVIVC in the Light of BCS
1.9.5. Applications of IVIVC
1.9.5.1. Biowaivers for changes in the manufacturing of a drug product
1.9.5.1.1. Biowaivers for lower strengths
1.9.5.1.2. Approval of new strengths
1.9.5.2. Product development
1.9.5.2.1. Setting-up of dissolution specifications

1.10. CARDIOVASCULAR DISEASES
1.10.1. Hyperlipidaemia
1.10.1.1. Types of Lipoproteins in Systemic Circulation
1.10.1.2. Atherosclerosis
1.10.1.3. Diagnosis of Hyperlipidaemia
1.10.1.4. Treatment of Hyperlipidaemia
1.10.1.4.1. Anti-hyperlipidemic Drugs
1.10.1.4.2. Newer Investigational Drugs
1.10.1.4.3. Newer Promising drugs for hyperlipidaemia
1.10.2. Hypertension
1.10.2.1. Classification
1.10.2.2. Signs and symptoms
1.10.2.3. Complications
1.10.2.4. Pathophysiology
1.10.2.5. Diagnosis
1.10.2.6. Prevention and therapy
1.10.2.7. Angiotensin II receptor blockers (ARBs)
1.10.2.7.1. Pharmacology

1.11. DRUG MONOGRAPHS
1.11.1. Ezetimibe: Drug Profile
1.11.1.1. Physicochemical properties
1.11.1.2. Absorption and distribution
1.11.1.3. Metabolism and Excretion
1.11.1.4. Effects of age, gender, race, hepatic and renal impairment
1.11.1.5. Mechanism of action
1.11.2. Valsartan: Drug Profile
1.11.2.1. Physicochemical properties
1 1.11.2.2. Absorption and distribution
1.11.2.3. Metabolism and Excretion
1.11.2.4. Effects of age, gender, race, hepatic and renal impairment
1.11.2.5. Mechanism of action
1.12. EXCIPIENT MONOGRAPHS
1.12.1. Long Chain Triglycerides (LCT’s)
1.12.2. Medium Chain Triglycerides (MCT’s)
1.12.3. Emulgents
1.12.4. Polymer precipitation inhibitors (PPI’s)
1.12.5. Cationic charge inducers
2. RESEARCH ENVISAGED
2.1 SELECTION OF THE DRUGS
2.2 SELECTION OF EXCIPIENTS
2.3 SELECTION OF DELIVERY SYSTEM
2.4 PROPOSED PLAN OF THE WORK
3. EXPERIMENTAL
3A. EQUIPMENT & MATERIALS
3B. METHODS
1 LIQUID AND SUPERSATURABLE SELF-EMULSIFYING DRUG DELIVERY SYSTEMS OF EZETIMIBE
3B.1. Analytical Methodology: Development and Validation
3B.1.1. Spectrophotometric method for quantitative estimation of ezetimibe
3B.1.1.1. Instrumentation and spectrophotometric conditions
3B.1.1.2. Calibration plots of ezetimibe in varied media
3B.1.1.3. Method validation
3B.1.1.3.1. Linearity
3B.1.1.3.2. Accuracy
3B.1.1.3.3. Precision
3B.1.1.3.3.1. Intra-day precision
3B.1.1.3.3.2. Inter-day precision
3B.1.1.3.4. Limit of detection (LOD)
3B.1.1.3.5. Limit of quantitation (LOQ)
3B.2. Liquid Self-Emulsifying Drug Delivery Systems of Ezetimibe: Development, Optimization and Characterization
3B.2.1. Initial Studies for Screening of Excipients
3B.2.1.1. Solubility studies
3B.2.1.2. Ternary phase diagrams
3B.2.1.3. Screening of influential variables for LCT-SEDDS and MCT-SEDDS
3B.2.1.3.1. Formulation of SEDDS as per the screening design
3B.2.1.3.2. In vitro dissolution studies
3B.2.1.3.3. Globule size analysis
3B.2.1.3.4. Emulsification time
3B.2.1.4. Drug-excipient compatibility studies
3B.2.2. Systematic Optimization Studies
3B.2.2.1. Formulation of SEDDS as per the CCD
3B.2.2.2. Characterization of the preliminary formulation(s)
3B.2.2.2.1. In vitro dissolution studies
3B.2.2.2.1.1. Drug release data analyses
3B.2.2.2.2. Non-everted gut sac technique
3B.2.2.2.3. Globule size analysis
3B.2.2.2.4. Emulsification time
3B.2.2.3. Validation of optimization technique
3B.2.3. Characterization of the optimized SNEDDS formulations
3B.2.3.1. Drug release comparison
3B.2.3.2. Thermodynamic stability studies
3B.2.3.2.1. Centrifugation study
3B.2.3.2.2. Heating/cooling cycles
3B.2.3.2.3. Freeze/thaw cycles
3B.2.3.3. Cloud point measurement
3B.2.3.4. Determination of globule size and zeta potential
3B.2.3.5. Transmission electron microscopy (TEM)
3B.2.3.6. Stability studies
3B.2.3.7. Drug release kinetic modeling

3B.3.1. Selection of a PPI
3B.3.1.1. Formulation of S-SNEDDS
3B.3.1.2. In vitro supersaturation test
3B.3.1.2.1. Apparent drug concentration-time profile
3B.3.1.2.2. Degree of supersaturation
3B.3.2. Characterization of optimized S-SNEDDS
3B.3.2.1. Characterization of Precipitates
3B.3.2.1.1. Optical microscopy
3B.3.2.1.2. Differential scanning calorimetry (DSC) analysis
3B.3.2.1.3. X-Ray powder diffraction (X-RPD)
3B.3.2.2. Drug release comparison
3B.3.2.3. Globule size analysis

3B.4. Rheological Study of Liquid and Supernatantable Self-Nanoemulsifying Drug Delivery Systems

3B.5. In Vivo Pharmacodynamic Studies of Liquid & Supernatantable Self-Nanoemulsifying Drug Delivery Systems

3B.5.1. Animals and maintenance
3B.5.2. Experimental protocol
3B.5.2.1. Induction of hypercholesterolemia
3B.5.2.2. Treatment schedule
3B.5.2.3. Blood collection and analysis
3B.5.2.4. Methods for the estimation of various lipid levels
3B.5.2.4.1. Total cholesterol (TC) determination: Trinders method
3B.5.2.4.2. Triglycerides (TG) determination: Wako method
3B.5.2.4.3. High density lipid (HDL) determination: Burstein method
3B.5.2.4.4. Low density lipid (LDL) determination: Indirect method
3B.5.2.4.5. Very low density lipid (VLDL) determination: Indirect method
3B.5.2.5. Statistical analysis

3B.6.1. Animals and maintenance
3B.6.2. Experimental protocol
3B.6.2.1. Induction of anesthesia
3B.6.2.2. Treatment schedule and dosing
3B.6.2.3. Perfusion of rat intestine
3B.6.2.4. Perfusate collection and analysis
3B.6.2.4.1. Perfusion data analysis

3C. METHODS (CONTD....)

II LIQUID AND CATIONIC SELF-EMULSIFYING DRUG DELIVERY SYSTEMS OF VALSARTAN

3C.1. Analytical Methodology: Development and Validation
3C.1.1. HPLC analysis method for quantitative estimation of valsartan
3C.1.1.1. Instrumentation
3C.1.1.2. Chromatographic conditions
3C.1.1.2.1. Standard stock solution
3C.1.1.2.2. Selection of mobile phase
3C.1.1.2.3. Selection of flow rate
3C.1.1.3. Working standards
3C.1.1.4. Method validation
3C.1.1.4.1. Linearity
3C.1.1.4.2. Accuracy
3C.1.1.4.2.1. Intra-day accuracy
3C.1.1.4.2.2. Inter-day accuracy
3C.1.1.4.3. Precision (repeatability) 169
3C.1.1.4.3.1. Intra-day precision 169
3C.1.1.4.3.2. Inter-day precision 169
3C.1.1.4.4. Limit of detection (LOD) 170
3C.1.1.4.5. Limit of quantification (LOQ) 170
3C.1.1.5. Plasma sample preparation 170
3C.1.1.6. Method validation for plasma samples containing valsartan 170
3C.1.1.6.1. Linearity 170
3C.1.1.6.2. Accuracy 171
3C.1.1.6.2.1. Intra-day accuracy and Inter-day accuracy 171
3C.1.1.6.3. Precision (repeatability) 171
3C.1.1.6.4. Limit of detection (LOD) and Limit of quantification (LOQ) 171
3C.1.2. Spectrophotometric method for quantitative estimation of valsartan 171
3C.1.2.1. Instrumentation and spectrophotometric conditions 171
3C.1.2.2. Calibration plots of valsartan in varied media 171
3C.1.2.3. Method validation 172
3C.1.2.3.1. Linearity 172
3C.1.2.3.2. Accuracy 172
3C.1.2.3.3. Precision (repeatability) 172
3C.1.2.3.3.1. Intra-day precision 172
3C.1.2.3.3.2. Inter-day precision 173
3C.1.2.3.4. Limit of detection (LOD) 173
3C.1.2.3.5. Limit of quantitation (LOQ) 173
3C.2.1. Initial studies for screening of excipients 173
3C.2.1.1. Solubility studies 173
3C.2.1.2. Ternary phase diagrams 174
3C.2.1.3. Screening of influential variables for LCT-SEDDS and MCT-SEDDS 174
3C.2.1.3.1. Formulation of SEDDS as per the experimental design 175
3C.2.1.3.2. In vitro dissolution studies 177
3C.2.1.3.3. Globule size analysis 177
3C.2.1.3.4. Emulsification time 177
3C.2.1.4. Drug-excipient compatibility studies 177
3C.2.2. Systematic optimization studies 178
3C.2.2.1. Formulation of SEDDS as per the CCD 178
3C.2.2.2. Characterization of the preliminary formulation(s) 178
3C.2.2.2.1. In vitro dissolution studies 178
3C.2.2.2.1.1. Drug release data analyses 178
3C.2.2.2.2. Non-everted gut sac technique 179
3C.2.2.2.3. Globule size analysis 179
3C.2.2.2.4. Emulsification time 179
3C.2.2.3. Validation of optimization technique 179
3C.2.3. Characterization of the optimized SNEDDS formulations 180
3C.2.3.1. Drug release comparison 180
3C.2.3.2. Thermodynamic stability studies 180
3C.2.3.2.1. Centrifugation study 180
3C.2.3.2.2. Heating/cooling cycles 180
3C.2.3.2.3. Freeze/thaw cycles 180
3C.2.3.3. Cloud point measurement 181
3C.2.3.4. Determination of globule size and zeta potential 181
3C.2.3.5. Transmission electron microscopy (TEM) 181
3C.2.3.6. Stability studies 181
3C.3.1. Selection of a cationic charge inducer (CCI) 182
3C.3.1.1. Formulation of C-SNEDDS 182
3C.3.1.2. Selection of cationic charge inducer 182
3C.3.1.3. Effect of varying concentration of oleylamine 182
3C.3.2. Characterization of optimized C-SNEDDS 183
3C.3.2.1. Globule size analysis and zeta potential 183
3C.3.2.2. Transmission electron microscopy (TEM) 183
3C.3.2.3. Drug release comparison 183
3C.3.2.4. Stability studies 183
3C.4. Drug release kinetic modeling 183
3C.5. Rheological study of liquid and cationic self-nanoemulsifying drug delivery systems 183
3C.6.1. Animals and maintenance 184
3C.6.2. Experimental protocol 184
3C.6.2.1. Induction of anesthesia 184
3C.6.2.2. Treatment schedule and dosing 184
3C.6.2.3. Perfusion of intestine 184
3C.6.2.4. Perfusate collection and analysis 185
3C.6.2.4.1. Perfusate data analysis 186
3C.7.1. Pharmacokinetic data analysis 188
3C.7.2. In vitro/in-vivo correlations (IVIVC) 188

4. RESEARCH AND DEVELOPMENT 190
1. LIQUID AND SUPERSATURABLE SELF-EMULSIFYING DRUG DELIVERY SYSTEMS OF EZETIMIBE 190
4B.1. Analytical Methodology: Development and Validation 190
4B.1.1. Spectrophotometric method for quantitative estimation of ezetimibe 190
4B.1.1.1. Calibration plots 190
4B.1.1.1.1. Linearity and linearity range 191
4B.1.1.1.2. Accuracy 195
4B.1.1.1.3. Intra-day and Inter-day Precision (repeatability) 196
4B.1.1.1.4. Limit of detection (LOD) and Limit of quantitation (LOQ) 198
4B.2.1. Initial Studies for Screening of Excipients 198
4B.2.1.1. Solubility Studies 198
4B.2.1.2. Ternary phase diagrams 200
4B.2.1.3. Screening of influential variables for LCT-SEDDS and MCT-SEDDS 205
4B.2.1.3.1. Model generation 206
4B.2.1.3.2. Model analysis 206
4B.2.1.4. Drug-excipient compatibility studies 209
4B.2.2. Formulation of ezetimibe SEDDS employing centered composite design 211
4B.2.3. Systematic optimization studies (LCT-SEDDS) 212
4B.2.3.1. Characterization of the preliminary formulations 212
4B.2.3.1.1. Calculation of coefficients for LCT-SEDDS 212
4B.2.3.1.2. Response surface mapping 217
4B.2.3.1.3. Search for the optimum formulation 225
4B.2.3.2. Validation of optimization studies (OPT-LCT) 233
4B.2.4. Systematic optimization studies (MCT-SEDDS) 243
4B.2.4.1. Characterization of the preliminary formulations 243
4B.2.4.1.1. Calculation of coefficients 243
4B.2.4.1.2. Response surface mapping 243
4B.2.4.1.3. Search for the optimum formulation 256
4B.2.4.2. Validation of optimization studies (OPT-MCT) 264
4B.2.4.3. Characterization of the optimized LCT-SNEDDS and MCT-SNEDDS formulations 274
4B.2.4.3.1. Thermodynamic stability studies 274
4B.2.4.3.2. Cloud point measurement 274
4B.2.4.3.3. Determination of globule size and zeta potential 274
4B.2.4.3.4. Transmission electron microscopy (TEM) 276
4B.2.4.3.5. Stability studies

4B.3.1. Selection of a PPI

4B.3.2. Characterization of optimized S-SNEDDS

4B.3.2.1. Globule size analysis

4B.3.2.2. In vitro supersaturation test

4B.3.2.3. Characterization of precipitates

4B.3.2.3.1. Optical microscopy

4B.3.2.3.2. Differential scanning calorimetry (DSC)

4B.3.2.3.3. X-Ray powder diffraction (X-RPD)

4B.3.2.4. Drug release comparison

4B.3.2.5. Drug release kinetic modeling

4B.4. Rheological Study of Liquid and Supersaturable Self-Nanoemulsifying Drug Delivery Systems

4B.5. In Vivo Pharmacodynamic Studies of Liquid and Supersaturable Self-Nanoemulsifying Drug Delivery Systems

II. LIQUID AND CATIONIC SELF-EMULSIFYING DRUG DELIVERY SYSTEMS OF VALSARTAN

4C.1. Analytical Methodology: Development and Validation

4C.1.1. HPLC analysis method for quantitative estimation of valsartan

4C.1.1.1. Linearity and linearity range

4C.1.1.2. Accuracy

4C.1.1.3. Precision

4C.1.1.3.1. System repeatability

4C.1.1.3.2. Intra-day and inter-day precision

4C.1.1.4. Limit of detection

4C.1.1.5. Limit of quantification

4C.1.2 HPLC analysis method for quantitative estimation of valsartan in plasma

4C.1.2.1. Linearity

4C.1.2.2. Accuracy

4C.1.2.3. Precision

4C.1.2.3.1. System repeatability

4C.1.2.3.2. Intra-day and inter-day precision

4C.1.2.4. Limit of detection and Limit of quantification

4C.1.3. Spectrophotometric method for quantitative estimation of valsartan

4C.1.3.1. Calibration plots

4C.1.3.1.1. Linearity and linearity range

4C.1.3.1.2. Accuracy

4C.1.3.1.3. Intra-day and Inter-day Precision (repeatability)

4C.1.3.1.4. Limit of detection (LOD) and Limit of quantitation (LOQ)

4C.2.1. Initial Studies for Screening of Excipients

4C.2.1.1. Solubility studies

4C.2.1.2. Ternary phase diagrams

4C.2.1.3. Screening of influential variables for LCT-SEDDS and MCT-SEDDS

4C.2.1.3.1. Model generation

4C.2.1.3.2. Model analysis

4C.2.1.4. Drug-excipient compatibility studies

4C.2.2. Formulation of valsartan SEDDS employing centered composite design

4C.2.3. Systematic optimization studies (LCT-SEDDS)

4C.2.3.1. Characterization of the preliminary formulations

4C.2.3.1.1. Calculation of coefficients for LCT-SEDDS

4C.2.3.1.2. Response surface mapping

4C.2.3.1.3. Search for the optimum formulation

4C.2.3.2. Validation of optimisation studies (OPT-LCT)
4C.2.4. Systematic optimization studies (MCT-SEDDS)
 4C.2.4.1. Characterization of the preliminary formulations
 4C.2.4.1.1. Calculation of coefficients
 4C.2.4.1.2. Response surface mapping
 4C.2.4.1.3. Search for the optimum formulation
 4C.2.4.2. Validation of optimization studies (OPT-MCT)
 4C.2.4.3. Characterization of the optimized LCT-SNEDDS and MCT-SNEDDS formulations
 4C.2.4.3.1. Thermodynamic stability studies
 4C.2.4.3.2. Cloud point measurement
 4C.2.4.3.3. Determination of globule size and zeta potential
 4C.2.4.3.4. Transmission electron microscopy (TEM)
 4C.2.4.3.5. Stability studies
 4C.3.1. Selection of a CCI and oleylamine concentration
 4C.3.2. Characterization of optimized C-SNEDDS
 4C.3.2.1. Determination of globule size and zeta potential
 4C.3.2.2. Stability studies
 4C.3.2.3. Transmission electron microscopy (TEM)
 4C.3.3. Drug release comparison
 4C.3.4. Drug release kinetic modeling
 4C.4. Rheological Study of Liquid and Supersaturable Self-Nanoemulsifying Drug Delivery Systems
 4C.6. In Vivo Pharmacokinetic Studies of Liquid and Cationic Self-Nanoemulsifying Drug Delivery Systems
 4C.6.1. In vitro/in vivo correlations (IVIVC)

5. CONCLUSIONS
6. BIBLIOGRAPHY
7. APPENDIX