INDEX

1 INTRODUCTION

1.1 Controlled drug delivery systems

1.1.1 Characteristics of a drug for control drug delivery system

1.1.2 Pharmacokinetic considerations

1.1.3 Polymers in controlled release of active active agents

1.1.3.1 Diffusion controlled devices

1.1.3.1.1 Matrix Systems

1.1.3.1.2 Reservoir Systems

1.1.4 Solvent controlled systems

1.1.4.1 Osmotically controlled systems

1.1.4.2 Swelling controlled systems

1.1.5 Chemically controlled systems

1.1.5.1 Biodegradable systems

1.1.6 Environmentally responsive systems

1.1.7 Drug delivery and the treatment of diabetes

1.1.8 Future directions in controlled drug delivery

1.2 Polymers

1.2.1 Carbopol

1.2.2 Chitosan

1.2.2.1 Physicochemical properties

1.2.2.2 Pharmaceutical uses

1.2.2.3 Preparation of chitosan microparticles

1.2.3 Hydroxypropylmethylcellulose

1.2.3.1 Pharmaceutical applications

1.2.3.2 Drug release from Hydroxypropylmethylcellulose matrices

1.2.4 Polyethylene oxide

1.2.4.1 Physicochemical properties

1.2.4.2 Drug release mechanism

1.2.4.3 Applications

1.3 Drugs

1.3.1 Glipizide

1.3.1.1 Physicochemical properties

1.3.1.2 Pharmacokinetics

1.3.1.3 Comparison of immediate release with extended release

1.3.1.4 Analysis of glipizide

1.3.1.5 Formulations of glipizide

1.3.2 Nifedipine

1.3.2.1 Physicochemical properties

1.3.2.2 Mode of action

1.3.2.3 Pharmacokinetics

1.3.2.4 Analysis of nifedipine

1.3.2.5 Pharmacodynamic properties of sustained release formulations

1.4 Dissolution profile Comparison

1.4.1 ANOVA-based methods

1.4.2 Model independent approaches

1.4.2.1 Ratio test Procedures

1.4.2.2 Pairwise Procedures

1.4.3 Model dependent approaches

2 RESEARCH ENVISAGED
3 MATERIALS & METHODS

3.1 Materials

3.2 Methods

3.2.1 Methods for glipizide controlled release system

3.2.1.1 Spectrophotometric standard plots of glipizide

3.2.1.2 Solubility determination of glipizide

3.2.1.3 HPLC method for estimation of glipizide in dissolution samples

3.2.1.3.1 Linearity

3.2.1.3.2 Accuracy

3.2.1.3.3 Precision

3.2.1.3.4 Limit of Detection

3.2.1.3.5 Limit of Quantitation

3.2.1.4 HPLC method for estimation of glipizide in plasma samples

3.2.1.4.1 Validation of peak homogeneity

3.2.1.4.2 Linearity

3.2.1.4.3 Accuracy (recovery)

3.2.1.4.4 Precision

3.2.1.4.5 Limit of Detection and Quantitation

3.2.1.5 Formulation of glipizide

3.2.1.6 Physical characteristics of tablets and drug content estimation

3.2.1.6.1 Weight Variation

3.2.1.6.2 Content Uniformity

3.2.1.6.3 Friability

3.2.1.7 Dissolution Studies

3.2.1.8 Stability Studies at Standard Storage Conditions

3.2.1.9 Analysis of Dissolution Data

3.2.2 Methods for Nifedipine controlled release system

3.2.2.1 Preformulation studies of nifedipine

3.2.2.1.1 Spectrophotometric standard plots of nifedipine

3.2.2.1.2 Solubility determination of nifedipine

3.2.2.2 Preparation of microspheres

3.2.2.2.1 Preparation of microspheres by thermal cross linking

3.2.2.2.2 Preparation of microspheres by glutaraldehyde cross linking

3.2.2.2.3 Preparation of microspheres by tripolyphosphate

3.2.2.2.4 Preparation of microspheres by emulsification and ionotropic gelation by NaOH

3.2.2.3 Morphological evaluation by scanning electron microscopy

3.2.2.3.1 Surface Topography

3.2.2.3.2 Internal structure characterization

3.2.2.4 Size distribution of microspheres

3.2.2.5 Drug entrapment efficiency of microspheres

3.2.2.6 Equilibrium swelling studies

3.2.2.7 Mucoadhesive behaviour of microspheres

3.2.2.7.1 Interaction between mucin and chitosan in aqueous solution-turbidimetric measurement

3.2.2.7.2 Mucus glycoprotein assay

3.2.2.7.3 Adsorption of mucin on chitosan microspheres

3.2.2.8 X-ray diffractometry studies

3.2.2.9 Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA)

3.2.2.10 Infrared and Nuclear magnetic Resonance Spectrum

3.2.2.11 In vitro release studies

3.2.2.12 Data Analysis

3.2.2.13 Stability of microspheres

3.2.2.14 Chemical stability of nifedipine
4 RESULTS AND DISCUSSION

4.1 Glipizide controlled release system

4.1.1 Preliminary studies of glipizide

4.1.2 pH-solubility profile of glipizide

4.1.3 HPLC method for estimation of glipizide in dissolution samples

4.1.3.1 Linearity

4.1.3.2 Accuracy

4.1.3.3 Precision (Repeatability)

4.1.3.4 Limit of Detection and Limit of Quantitation

4.1.4 HPLC method for estimation of glipizide in plasma samples

4.1.4.1 Validation for peak homogeneity

4.1.4.2 Linearity

4.1.4.3 Accuracy (recovery)

4.1.4.4 Precision

4.1.4.5 Limit of Detection and Limit of Quantitation

4.1.5 Formulation of glipizide

4.1.5.1 Preparation and evaluation of tablets

4.1.6 Dissolution studies

4.1.7 Release kinetics

4.2 Nifedipine controlled release system

4.2.1 Preliminary studies of nifedipine

4.2.1.1 Selection of λ_{max} for determination

4.2.1.2 Selection of dissolution medium

4.2.2 Preparation of microspheres

4.2.3 Morphological evaluation by scanning electron microscopy

4.2.3.1 Surface Topography

4.2.3.2 Internal structure characterization

4.2.3.3 Effect of drug loading

4.2.3.4 Effect of Span 85 concentration

4.2.3.5 Effect of dissolution

4.2.4 Size distribution of microspheres

4.2.4.1 Effect of stirring speed and drug loading on size distribution

4.2.5 Determination of nifedipine content in the microspheres

4.2.6 X-ray diffractometry studies

4.2.7 Differential Scanning Calorimetry (DSC) and Thermogravimetric analysis (TGA)

4.2.8 Equilibrium swelling studies

4.2.9 Mucoadhesive behaviour of microspheres

4.2.10 IR and NMR studies

4.2.11 Release Kinetics

4.2.12 Stability of microspheres and nifedipine

5 SUMMARY

6 REFERENCES